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Abstract 

Since cities become more complex and some of large cities are likely to be 

polycentric, a better understanding of cities requires a clear topology that reveals how 

city centers are spatially distributed and interacted. The identification of city center 

that aims to find out accurate location of city center or delineate city center with a 

precise boundary becomes vital. This work attempts to achieve this by using a new 

type of movement data generated from location-based social networks, whereby three 

different methods are deployed for clustering and compared regarding identification 

of city centers and delineation of their boundaries. Experiments show that city centers 

with precise boundaries can be identified by using the proposed approach with 

location-based social network data. In further, it finds out that the three methods for 

clustering have different advantages and disadvantages during the process of city 

center identification, and thus seem to be suitable for cities with different urban 

structures. 
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1. Introduction 

The structure of cities is one of the most vital issues in urban studies. A better 

understanding of the structure of a city facilitates urban planning, policymaking, 

resource allocation and traffic monitoring, among other things. City centers are core 

of cities and are areas with clustering of socio-economic activities (Anas et al., 1998). 

Previous studies have revealed that large cities, which can be considered complex 

systems, tend to be polycentric (e.g., Roth et al., 2011). Since cities become more 

complex and some of large cities are polycentric, a better understanding of cities 

requires a clear topology that reveals how city centers or sub-centers are spatially 

distributed and interacted (Kloosterman and Musterd, 2011). The spatial arrangement 

of city centers and how individuals interact with these centers is a crucial problem 

with many applications ranging from urban planning to epidemiology (Roth et al., 



2011). The most prominent and visible effects of such spatial organization of 

economic activity in large and densely populated urban areas are characterized by 

severe traffic congestion and the strong possibilities of rapidly spreading viruses, 

biological and social, through the dense underlying networks (see Eubank et al., 2004; 

Balcan et al., 2009; Wang et al., 2009). Therefore, the identification of city center that 

aims to find out accurate location of city center or delineate city center with a precise 

boundary becomes vital. On the other hand, since ‘central places’ theory is widely 

used, some models are proposed to simulate some urban phenomena (e.g., population 

distribution, supply of transport infrastructure, etc.) (see Clark, 1951; Alonso, 1960). 

These simulation models are based on the distance from city center, enabling a 

reasonable identification of city center to become vital in many urban applications or 

urban studies (e.g., population density estimation, site selection of service facilities, 

traffic monitoring, etc.).  

Conventionally, city centers are detected using socio-economic data collected by 

authorities (e.g., Thurstain-Goodwin and Unwin, 2000). In the recent years, more and 

more researchers (e.g., Ratti et al., 2006; Roth et al., 2011; Jiang et al., 2012) tried to 

analyze urban structures by using movement data, because it can reveal the 

interactions between different urban centers in a polycentric city (Roth et al., 2011). 

However, the research works using movement data are limited so far to detect city 

centers for medium-sized and monocentric cities (e.g., Thurstain-Goodwin and Unwin, 

2000; Borruso and Porceddu, 2009; Lüscher and Weibel, 2012). Roth et al. (2011) 

tried to apply subway record data for a city with more than one centers. But their 

approach is not able to delineate precise boundaries of city centers. Therefore, how to 

use a variety of mobility data (e.g., subway record, taxi GPS traces, social media 

geo-data, etc.) to identify city centers with accurate positions or precise boundaries in 

relatively complex cities becomes a new research direction.  

The presented work attempts to fill the abovementioned research gaps, namely, to 

detect city centers in polycentric cities and determine the boundaries of city centers in 

this work, whereby location-based social networking (LBSN) data is used, because 

geo-referenced and time-stamped ‘check-in’ (sometimes referred to as a type of 

volunteered geographic information (VGI) can be used to indicate user mobility (e.g., 

Noulas et al., 2011; Scellato et al., 2011; Cheng et al., 2011; Wei et al., 2012; Bao et 

al., 2012). First of all, human mobility information and also the travel flow count for a 

venue are generated using LBSN check-ins. Then travel flow clusters are detected by 

means of three distinct methods and significant clusters are selected to differentiate 

potential city centers from non-centers. The approach is deployed to identify city 

centers for three German cities (Berlin, Munich and Cologne) using the movement 

data generated by LBSN check-ins. At the same time, this study empirically tests the 

http://dl.acm.org/author_page.cfm?id=81418595527&coll=DL&dl=GUIDE&CFID=161772422&CFTOKEN=50511272


validity of using LBSN data for city center identification. To better test the validity, 

three distinct methods are used to identify city centers. Obviously, the validity of 

using LBSN data for city center identification will be better proved by good 

performances of distinct types of methods than that by only one type of method. 

Moreover, we will compare the three distinct methods, to discuss the advantages and 

disadvantages the three methods have for city center identification and which types of 

urban structures they are likely to be suitable for.  

The remainder of this paper is organized as follows. Section 2 introduces previous 

studies, while Section 3 introduces the approach used in this study. Section 4 presents 

how the empirical analysis was carried out for this case study and the relevant results, 

and lastly, Chapter 5 presents the conclusion and makes recommendations for future 

work. 

 

2. Related works  

Since the 1950s, there have been research works to theoretically define or delineate 

city center using limited data sources (see e.g., Murphy and Vance, 1954; Carol, 1960; 

Alonso, 1964; Murphy, 1972). Over the last decade, a number of approaches have 

been made available to quantitatively delineate the city center using a variety of data 

sources. In Thurstain-Goodwin and Unwin (2000) a city center was delineated by 

creating an index called ‘index of town centeredness’, which is composed of a series 

of indicators to represent the typicality of a city center. The ‘kernel density’ 

estimation method is then used to transform the discrete geo-referenced data created 

by the relevant indicators into continuous surfaces denoting spatial densities. In terms 

of the individual density values of the indicators, a continuous surface for the ‘index 

of town centeredness’ was generated. A similar study was made by Borruso and 

Porceddu (2009). To present a behavioral science method for determining the 

referents of vague spatial terms, and particularly vague regions, Montello et al. (2003) 

asked pedestrians to draw the city center with 100% confidence and 50% confidence 

respectively. Using remote sensing data, Taubenboeck et al. (2013) presented a 

conceptual framework to define the CBD using physical and morphological 

parameters, and tests the approach using 3D city models of three European test sites. 

A transferable method was developed to detect and delineate CBDs over larger areas 

from a combination of Cartosat-1 digital surface models and multispectral Landsat 

ETM+ imagery. 

With the development of mobile devices and the popularity of social media (Twitter, 

Facebook, Flickr and Foursuqare, among others), user generated geo-data (including 



geo-referenced images and geo-referenced check-ins) shows the potential to help 

delineate a city center. For instance, Hollenstein and Purves (2010) used 

geo-referenced images from Flickr to describe a city’s core, using image tags such as 

‘downtown’, ‘central’, ‘cbd’, ‘inner city’ and ‘city center’. Similarly, they used the 

kernel density estimation method to transform these typical geo-referenced images, 

which were represented as spatial points, into continuous spatial density surfaces. To 

better quantify the typicality of a city center, Lüscher and Weibel (2012) sought to 

combine the approaches of Thurstain-Goodwin and Unwin (2000), and Montello et al. 

(2003). They created an index to represent the typicality of a city center which is 

composed of frequency-based characteristics, landmark-based features and area-like 

characteristics. The weight of each characteristic was determined based on a 

questionnaire. Specifically, participants were asked to classify the facilities (such as 

restaurants, museums, bars, shops and railway stations) into three types of 

characteristic, and further assign a weight to each. Empirical studies have 

demonstrated that their proposed approach performs well when delineating city 

centers.  

In the above-mentioned works cities for test purpose are not typically polycentric 

cities (e.g., Thurstain-Goodwin and Unwin, 2000; Montello et al., 2003; Lüscher and 

Weibel, 2012). More recently, movement data has been used to identify city centers or 

sub-centers in typically polycentric cities. Compared to socio-economic data, 

movement data can not only identify urban centers but also reveal the interactions 

between different urban centers in a polycentric city. For instance, Roth et al. (2011) 

reveal that the majority of subway flows were distributed among a small number of 

stations, indicating that human activity was concentrated in a small number of centers 

dispersed across the city, indicating a polycentric structure in London.  

      

3. Detection of city centres using LBSN data 

In this section, the proposed approach of detection of city centres using LBNS data is 

presented. First of all, LBSN data (mainly check-in) is introduced in terms of its 

general characteristics and representativeness. Check-ins will be generated into 

movement data firstly. Then clusters will be detected for the identification of city 

centers. After that, city centers will be identified. At last, the identified city centers 

will be validated.  

 

3.1 Introduction of check-in data 



 

Chowell et al. (2003) mapped a city into a network composed of nodes, each of which 

represented a physical location such as a building. In location-based social media such 

as Foursquare, each venue also represents a physical location (see Figure 1), and in 

this case a ‘venue’ can be considered a Point-Of-Interest (POI), one widely used. 

Common types of venue include restaurants, offices, apartments, hotels, bus stops, 

shops and gyms.  

 

 

Figure 1: Examples of user mobility 

 

In Figure 1, for instance, a user checks in at venue A (a house) and venue B (an office) 

consecutively. We can therefore deduce that there has been a ‘movement’ from venue 

A to venue B, irrespective of the specific route taken by the user between the two 

venues. Sometimes, a user might move twice between two venues, in opposite 

directions, such as moving from an office to a restaurant before lunch, and moving 

from the restaurant to the office after lunch. In studies of human mobility, 

‘displacement’ is widely used to measure the length of a user movement (e.g., 

González et al., 2008). In this context, ‘displacement’ is defined as a vector, 1) whose 

length equals the distance between two consecutive positions (venues), and 2) whose 

direction is from the initial position (original venue) to a final position (destination 

venue). In Figure 1, there is a ‘displacement’ from venue A (house) to venue B (office). 

Therefore, pairs of consecutively geo-referenced and time-stamped check-ins can 

constitute displacements of users. Moreover, a displacement can be considered a 

travel flow. From the original venue (starting position) the displacement is an outflow, 

while to the destination venue (final position) the displacement is an inflow. For a 

venue, the total flow count is equal to the sum of the outflow and inflow counts. In 

Figure 1, the outflow and inflow counts for venue A are both one, thus the total flow 

count is two.  

Note that despite some limitations on representing human mobility, e.g., the bias of 



age group and bias of place category, check-in data has the ability to represent human 

mobility. According to the statistics of Foursquare 

(www.factbrowser.com/tags/foursquare/), a large proportion of its registered users are 

young and the users are likely to check in at particular places such as airports (Liu et 

al., 2014). Users of LBSNs check in at commercial locations much more often than 

residential locations. At the same time, some existing literature show that the 

commercial locations (e.g., restaurant, retail, clothing shop, pub, etc.) are more 

important to represent city center than residential locations (e.g., apartment, private 

home, etc.) (Borruso and Porceddu, 2009; Lüscher and Weibel, 2012). In this case, 

popular locations in LBSNs are also likely to be important locations used to represent 

city center. For instance, obviously retails and clothing shops contribute more to the 

identification of city center than apartments and residential houses. And retails and 

clothing shops also have more check-ins made by LBSN users than apartments and 

residential houses. This implies that the heterogeneity in the popularities of LBSN 

venue categories is somewhat consistent with the heterogeneity in the contributions of 

venue categories to the identification of city center. Thus, the important venues for 

center identification are likely to be included by LBSN data, reducing the influence of 

LBSN data bias on the city center identification. 

 

3.2 Cluster detection 

In fact, flow count in space is strongly impacted by environmental characteristics e.g., 

population density, land use, etc. (Liang et al., 2013). If there is a spatially local 

cluster composed of venues 1) which are located closely to each other and 2) which 

have higher number of flows, this cluster might indicate the existence of a city center. 

The following three methods representing three types of clustering methods are more 

widely used in related works to detect clusters.   

1) Local Getis-Ord 𝐺𝑖
∗ (LGOG) 

The local Getis-Ord 𝐺𝑖
∗ statistical method (Getis and Ord, 1992; Ord and Getis, 1995) 

is a clustering method for either high values or low values. It is used here to identify 

significant clusters of high values, as constituted by venues with a large number of 

flows in a city. The local Getis-Ord 𝐺𝑖
∗ statistical method is widely used to identify 

clusters of high values (‘‘hot spots’’) or low values (‘‘cold spots’’) (O'Sullivan and 

Unwin, 2010). Indeed, there are two steps needed to finally identify cluster. 

a) Detecting hotspots of travel flow 

As a statistically significant hotspot, a venue must have a high value of flows and be 

surrounded by other venues with high values also. The value of the 𝐺𝑖
∗ statistic is 



used to indicate if a venue is a hot spot or cold spot. Apart from the flow count of the 

venue, the flow counts of its neighbors are taken account of by the calculation of the 

𝐺𝑖
∗ statistic for the venue. Thus, neighbor distance threshold is used to identify the 

neighbors of a given venue, so that if the distance between a venue i and j was less 

than the distance threshold, j was a neighbor of i; otherwise, it was not. With a 

specific value of neighbor distance threshold, the value of the 𝐺𝑖
∗ statistic for each 

venue will be calculated.  

The value of the 𝐺𝑖
∗ statistic is essentially a Z-score, hence no further calculations are 

required. Z-score = (x - μ) / σ, where x is the observation, μ is the mean of population 

and σ is standard deviation of population. A Z-score is used to indicate statistical 

significance. For statistically significant and positive Z-scores, the larger the Z-score 

is, the more intense the clustering of high values. As Z-score is originally used in the 

characterization of normal distribution, a Z-score greater than 1.96 indicates the 

occurrence of an abnormal event at a significance level of 0.05. Thus, in this study, a 

statistically significant hotspot is a venue of a high value (a large number of flows) 

with a corresponding Z-score greater than 1.96. In other words, the hotspots are the 

venues with Z-scores greater than 1.96.  

b) Detecting clusters 

Compared to the other two methods, the originally LGOG method offers hotspots 

instead of clusters that are actually hotspot sets or hotspot groups. Thus, how to group 

spatially close hotspots into a hotspot set (i.e., cluster) necessarily needs to be 

determined. Here, a cluster is a hotspot set composed of hotspots 1) are ‘spatially 

close’ to each other; and 2) are not ‘spatially close’ to hotpot of other cluster. If two 

hotspots are neighbors of each other, i.e., the distance between them is less than the 

pre-defined neighbor distance threshold, they are considered to be ‘spatially close’ to 

each other. Using these two rules, distinct clusters will be finally distinguished.  

2) Density-based spatial clustering of applications with noise (DBSCAN) 

DBSCAN algorithm (Ester, et al., 1996) is a density-based clustering algorithm. In 

addition to DBSCAN, OPTICS, DENCLUE and their modified versions (Ester, et al., 

1996; Ankerst et al., 1999; Hinneburg and Keim, 1998) are typical density-based 

clustering algorithms. DBSCAN algorithm can detect arbitrary-shaped cluster.  

It starts with an arbitrary starting point that has not been visited. This point's 

ε-neighborhood is retrieved, and if it contains sufficiently many points, a cluster is 

started. Otherwise, the point is labeled as noise. Note that this point might later be 

found in a sufficiently sized ε-environment of a different point and hence be made 

part of a cluster. 



If a point is found to be a dense part of a cluster, its ε-neighborhood is also part of that 

cluster. Hence, all points that are found within the ε-neighborhood are added, as is 

their own ε-neighborhood when they are also dense. This process continues until the 

density-connected cluster is completely found. Then, a new unvisited point is 

retrieved and processed, leading to the discovery of a further cluster or noise. 

To run DBSCAN algorithm, there are two parameters required: eps (the maximum 

radius of a neighborhood) and minPts (the minimum number of points required to 

form a cluster). These two parameters can restrain the spatial range and size (point 

count) of cluster respectively.  

3) Grivan-Newman (GN) 

Grivan-Newman (GN) algorithm (Girvan and Newma, 2002) is originally proposed as 

a community detection algorithm. Some studies use community detection algorithms 

to investigate spatial relationship, particularly to detect spatially interacted places (e.g., 

Thiemann et al., 2010; Liu, et al., 2014). Like other community detection algorithms, 

GN algorithm is based on network or graph theory (Girvan and Newma, 2002). 

Imagine a venue can be considered as a ‘node’. If there are trips between two nodes 

(venues), these two nodes are connected. A connection between two nodes is an 

‘edge’. In a city, the venues (nodes) and edges (connections) can constitute a network 

or graph. GN algorithm aims to identify a partition P of nodes into k modules (sub 

networks or sub graphs) so that the intra-connectivity of the modules in the partition is 

high and inter-connectivity is low. A fast algorithm of Newman (2001) is used to find 

out the optimum partition with the highest ‘modularity’. The ‘modularity’ is used to 

measure the partition P. A larger ‘modularity’ indicates a better partition with higher 

intra-connectivity and lower inter-connectivity. Therefore, GN is technically a 

connectivity-based method.  

Specifically, this study assumes that venues are more likely to be connected with 

venues within an identical city center area than venues outside. A community 

composed of venues with a high intra-connectivity and a limitedly spatial range is 

likely to be a potential city center. Therefore, GN algorithm is used to identify city 

center as well. Since city center should have a limited spatial range, this study took 

only short trips into account. Although some studies detect successfully continuous 

and compact region with a high intra-connectivity without removing long trips (e.g., 

Thiemann et al., 2010; Liu, et al., 2014), they make use of inter-urban mobility data 

while this study uses intra-urban mobility data that is relatively sparse and 

heterogeneous. Therefore, long trips should be removed to generate a good result, i.e., 

venues that constitute an identical community should be spatially close to each other. 

There is an issue, i.e., how to determine the length of the ‘long’ trips here. This study, 



thus, adopts the GN algorithm by adding a parameter, i.e., maxLen, which means the 

maximum trip length. With a specific value of maxLen, the trips with a length larger 

than this value will be removed and the corresponding connections (edges) will be 

removed from the network or graph as well.  

 

3.3 Identification of city centers  

Based on the results of clustering, city centers are detected in three steps as follow:  

1) Matching typical cluster to candidate landmark 

Typical clusters need to be matched with the closest candidate landmarks. Here 

candidate landmarks are landmarks (e.g., central plaza, railway station, etc.) that are 

considered as central locations of potential city centers according to local knowledge. 

Such landmark is mapped as a point. The centroids of typical clusters will be matched 

with landmarks by using the shortest distance rule. Here the centroid of a cluster is the 

mass center of the points in the cluster. Thus, among several candidate landmarks, the 

one, who is the closest to the centroid of a typical cluster, will be matched with the 

cluster. If a landmark becomes the closest landmark of more than typical cluster, 

among these clusters the one with the shortest distance to this landmark will be 

chosen as the unique one matched with this landmark.  

2) Determining city center 

Among the typical clusters that are matched with candidate landmarks, the largest one 

i.e., the one with the largest flow count, will be initially considered as a city center 

since 1) this cluster could be matched with a candidate landmark; 2) and it is the most 

prominent cluster. After that, if another typical cluster could be considered as another 

city centers will be determined in terms of the Rate(C) defined as  

𝑅𝑎𝑡𝑒(𝐶𝑗) =
𝑓𝑙𝑜𝑤_𝑐𝑜𝑢𝑛𝑡(𝐶𝑗)

𝑓𝑙𝑜𝑤_𝑐𝑜𝑢𝑛𝑡(𝐶1)
, 𝑗 = 2, … , 𝑘                                 (1) 

 

Where Cj (j=2,…,k) is the jth most typical cluster. Rate(C) is used to show the extent 

of the difference in flow counts between distinct clusters. A higher Rate(C) indicates a 

smaller difference of flow count between the cluster and the first largest cluster, 

meaning this cluster could be considered as another city center with a higher 

probability.  

3) Delineating city center 



After a cluster is considered as a city center, this city center with a precise boundary 

will be delineated. In this research, Voronoi diagram was used to divide a city into 

polygons. Each venue corresponds to a polygon. Figure 2 shows the Voronoi 

polygons generated from venues in a city. In Figure 2, a group of points (red points) 

constitute a cluster, and thus a group of polygons (red polygons) constitute a 

2-dimensional object. Therefore, each cluster of venues (points) corresponds to a 

2-dimensional object composed of polygons. The boundary of a cluster could be 

represented by the boundary of a 2-dimensional object (the blue outline). If a venue 

cluster represents a city center, the boundary of the cluster will be used to represent a 

precise boundary of the corresponding city center. Thus, the final result of 

identification is an area with a precise boundary (i.e., a Voronoi polygon group).  

 

 

Figure 2: Voronoi polygons of venues and venue cluster 

 

3.4 Validation 

In this study, the final result of identification is an area (Voronoi polygon group) with 

a precise boundary. However, ground truth data is limited. Although some existing 

literature might report the approximate location of a city center, normally they do not 

offer a precise boundary of the city center. Conventionally, a landmark (e.g., central 

square, train station, etc.) is used to represent an approximate location of a city center. 

In this case, the identified city center can be characterized by an area with precise 

boundary while the actual one can only be characterized by a point (landmark).  

Since the precise boundaries of actual city centers are unavailable, we are not able to 

accurately estimate the accuracy of the boundary delineation.     



Due to the limitation of ground truth, we will simply validate the identification. 

Specifically, the landmark, which is considered to be an approximate central location 

of a city center by the existing literature, is used to represent the central location of 

the ‘actual’ city center; while the landmark, which is matched with the cluster 

representing a city center, is used to represent the central location of the identified city 

center. If the landmark representing the central location of the actual city center is the 

same with the one representing the central location of the identified city center, the 

validation result will be true.  

    

4. Experimental results and discussions 

The proposed approach is applied to detect city centers using LBSN check-in data in 

three German cities such as Berlin, Munich and Cologne. This section demonstrates 

the experimental results and gives discussions about the detection of city centers. 

4.1 Study case 

4.1.1 Check-in data set 

In this paper, the check-in dataset was collected from an LBSN called Gowalla, which 

is similar to Foursquare, by Cho et al. (2011). The positional accuracy of the data is 

from 10 to 15m. In this work, we chose three most important cultural and economic 

German cities (Berlin, Munich and Cologne) as our test beds. Within the 

administrative boundaries of these cities, there were approximately 31,000, 20,000 

and 19,000 check-ins respectively, and Table 1 shows the user count and venue count 

in the three cities. The population (2012) and areas of the three cities are also listed in 

Table 1. The total check-in count for each city is basically proportional to the total 

population of the city.     

 

Table 1: Statistical description of the sub-dataset for the three study cities 

City 
Population 

(millions) 

Area 

(km
2
) 

Check-in 

count 

Venue 

count 

User 

count 

Displacement 

count 

Berlin 3.375 891.85 31185 2770 1611 4696 

Munich 1.388 310.43 19636 1068 1037 2810 

Cologne 1.024 405.15 18658 1626 1154 3368 

 

 

4.1.2 Data pre-processing 



The user displacements used in our study were daily displacements, meaning each 

displacement was composed of two consecutive check-ins made by the same user on 

the same day. Therefore, we need to filter noise in two situations. Situation 1: when a 

user generated more than one check-in at the same position, the earliest check-in was 

kept and the others were discarded. Situation 2: displacements with abnormal speed 

(for instance 250km/h within a city) will be discarded. Finally, we obtained 4696, 

2810 and 3368 displacements (travel flows) for Berlin, Munich and Cologne 

respectively. 

4.2 Distribution of travel flows 

Figure 3 shows that the distributions of the travel flow counts among venues in the 

three cities follow a power law, this being: P(x) ~ x 
– α

. This has been verified by a 

Kolmogorov-Smirnov (KS) test (for more detail see Clauset et al., 2009). In the 

log-log plot, the slope of the scatter equals the exponent coefficient of the cumulative 

distribution function (CDF), i.e., –α. All slopes are negative in the plot, demonstrating 

the heterogeneity of the flow count among venues, namely, few of the venues have a 

relatively large number of flows while the vast majority of the venues have a small 

number of flows.  

 

Figure 3: Distribution of travel flow counts among venues shown in a log-log plot. 

The y-axis represents the cumulative distribution function (CDF), i.e., 

F(x)=P(x>=X).The CDF of the travel counts for venues in the three cities all follow 

a power law: P(x) ~ x 
– α

. The slope of the scatter (i.e., the exponent coefficient –α) 

is -1.41, -1.34 and -1.24 for Berlin, Munich and Cologne respectively. 



 

4.3 City center identification 

4.3.1 Cluster detection 

1) Cluster detection using LGOG 

a) Detecting hotspots of travel flow 

The calculations of local Getis-Ord 𝐺𝑖
∗ in this paper were conducted using ESRI 

ArcMap 10.1. We chose the distance-based method to identify the neighbors of a 

given feature, so that if the distance between a feature (venue) i and j was less than the 

distance threshold, j was a neighbor of i; otherwise, it was not.  

An appropriate value for neighbor distance threshold is vital. Here we chose 1km as 

the neighbor distance threshold on the experiences of city center size from some 

related studies (e.g., Borruso and Porceddu, 2009; Lüscher and Weibel, 2012). Thus, 

1km was used as the neighbor distance threshold of the hotspot detection in the three 

cities.  

b) Detecting clusters 

We selected the statistically significant hotspots with Z-scores greater than 1.96. With 

a distance threshold of 1km, a few clusters were distinguished using the method based 

on ‘spatial closeness’ (see sub section 3.2). Because they are located in sparsely 

populated areas, only the clusters with relatively large total numbers of flows and 

densely populated positions are considered as candidates for city centers.  

2) Cluster detection using DBSCAN 

The calculations of DBSCAN in this paper were conducted using R software 

(http://www.r-project.org/). Since DBSCAN is a purely clustering algorithm rather 

than an abnormality detection method or a burst detection method, DBSCAN is not 

able to identify numeric features or attributes. Instead, DBSCAN only counts points. 

This means that a venue with a certain flow count should be transformed into a set of 

separate points with an identical position before being input into DBSCAN. For 

instance, a venue with a flow count of ten should be transformed into ten distinct 

points with the identical position (coordinates) with the venue. Each point 

corresponds to a destination or origin of a certain trip.  

DBSCAN was run a couple of times with distinct pairs of parameters (eps and 

minPts). The result of DBSCAN corresponding to a pair of parameters, i.e., eps = 

150m and minPts = 100, were chosen in this study since the centroids of the two 

largest clusters, i.e., the two clusters with the largest number of points (the largest 

flow counts), are relatively close to those identified by LGOG in Berlin.   



3) Cluster detection using GN 

The calculations of GN in this paper were conducted using R software as well. As 

noted in the sub section 3.2, long trips should be removed to generate a good result, 

i.e., venues that constitute an identical community should be spatially close to each 

other.    

Similarly, GN was run a couple of times with distinct parameters (i.e., maxLen). The 

result of GN corresponding to a specific parameter, i.e., maxLen = 500m was chosen 

in this study since the centroids of the two largest clusters are relatively close to those 

identified by LGOG in Berlin.  

Figure 4 maps the typical clusters (i.e., clusters with relatively large flow counts) 

detected by three methods in the three study cities.  

 

   

LGOG                  DBSCAN                  GN 

a) Berlin 

   

  LGOG                  DBSCAN                  GN 

b) Munich 



   

LGOG                  DBSCAN                  GN 

c) Cologne 

Figure 4: Typical clusters detected by three different methods (Basemap: 

OpenStreetMap, contributors: CC-BY-SA)  

 

 

4.3.2 City center identification 

To be simple, it is assumed that there are no more than two city centers in all the three 

cities since 1) there are two city centers in Berlin as some literature report and 2) the 

other two cities that have smaller population and areas than Berlin are likely to have 

no more city centers than Berlin. Therefore, for the three methods, the two most 

typical clusters identified are considered as candidates for city centers with an 

assumption that there are no more than two city centers in each study city.  

As introduced in sub section 3.3, three steps were taken to identify city centers.   

1) Matching typical cluster to candidate landmark 

The two most typical clusters identified in three cities were matched with candidate 

landmarks representing the central locations of potential city centers based on some 

socio-economic knowledge of study cities (e.g., economic structure, industrial 

distribution, history and culture, etc.). Table 2 list the candidate landmarks matched 

with the two most typical clusters detected by three different methods. 

 

 

 

 

 

 

 



Table 2: Candidate landmarks matched with the two most typical clusters detected by 

three different methods 

Method Cluster 
Matched candidate landmark 

Berlin Munich Cologne 

LGOG 
1 Potsdamer Platz Central railway station 

Central railway 

station 

2 Alexanderplatz Business park  Zollstock 

DBSCA

N 

1 Alexanderplatz Central railway station 
Convention 

Bureau 

2 Potsdamer Platz Marienplatz  Hahnen Gate 

GN 
1 Alexanderplatz Central railway station 

Convention 

Bureau 

2 Potsdamer Platz Marienplatz  Hahnen Gate 

 

 

2) Determining city center 

First, the first most typical cluster, i.e., the one with the largest flow count, is 

considered as a city center. Second, to further determine if the second most typical 

cluster be a city center, we set the threshold for Rate (C2) as 0.5. If Rate (C2) > 0.5, 

the second most typical cluster will be considered to be another city center. 

As a consequence, all three methods identified two city centers in Berlin. However, 

DBSCAN and GN both identified two city centers in Munich and Cologne; while 

LGOG identified only one. Table 3 lists the city centers detected by three methods and 

the flow counts of the clusters which are considered to be city centers. Note that, 

although the two city centers identified by three methods in Berlin are same, the 

ranking of city centers in the identification results using LGOG method is different 

from that using the other two methods. Potsdamer Platz is matched with the city 

center 1 (the 1st largest city center) identified using LGOG method; whereas it is 

matched with the city center 2 (the 2nd largest city center) identified using the other 

two methods. 

 

 

 

 

 

 

 



Table 3: The city centers detected by three methods 

 

City City center 
Central location of city 

center (matched landmark) 

Flow count of cluster 

LGOG DBSCAN GN 

 

Berlin 

1 Alexanderplatz 425 352 349 

2 Potsdamer Platz 681 260 271 

 

Munich 

1 Central railway station 474 395 443 

2 Marienplatz* - 302 346 

Cologne 
1 Convention Bureau 444 864 762 

2 Hahnen Gate* - 554 481 

Note: * means that the city center is not identified by LGOG method. 

 

3) Delineating city center 

In this part, city centers with precise boundaries will be delineated. Figure 5 maps the 

identified city centers with precise boundaries using different methods. In cities of 

Germany, compared to the district or borough data, postal code region (PLZ) data has 

a larger spatial scale and thus was used as the data source of comparative city center 

boundary in this study (http://arnulf.us/PLZ). Note that the precise boundaries of 

actual city centers in the three study cities are unavailable, the comparative 

boundaries of city centers used here can’t really represent the precise boundaries of 

actual city centers. A PLZ is a sub region with a unique postal code. Specifically, the 

PLZ where a certain candidate landmark is located was chosen to represent the 

administrative boundary of the corresponding city center. For instance, a specific PLZ 

where the landmark Alexanderplatz is located was used as the administratively 

comparative boundary of the city center 1 in Berlin since Alexanderplatz corresponds 

to the city center 1 in Berlin (see Table 3). The boundaries of city centers delineated 

don’t well overlap the administratively comparative boundaries, implying that human 

activities seems to be not large influenced by the administrative divisions of a city.   

 



 

a) Berlin 

 

a) Munich 

 

c) Cologne 

Figure 5: The identified city centers using three methods (Basemap: OpenStreetMap, 

contributors: CC-BY-SA).  

 



 

4.3.3 Validation of the results 

Berlin has two central business districts (CBDs) that are located in Potsdamer Platz 

and Alexanderplatz according to some literature (e.g., Gornig and Häussermann, 2002; 

Van Criekingen, et al. 2007). Actually, city center has a more broad definition than 

CBD that is center of economy. Normally, city center could be an economical center, 

political center or cultural center of a city; while CBD is only an economical center.  

Due to the limitation of ground truth, the two CBDs in Berlin are used to represent 

two actual city centers in this study. The approximate central locations of city centers 

in Munich and Cologne are not clearly reported in the existing English publications. 

Therefore, in this study there is no ground truth data for city centers in Munich and 

Cologne. In this study, the landmark, which is used as an approximate central location 

of a CBD, is used to represent the central location of an actual city center. While the 

candidate landmark, which is matched with an identified city center, is used to 

represent the central location of the identified city center. In Berlin, the two 

landmarks representing the central locations of two actual city centers are the same 

with the two landmarks representing central locations of two identified city centers. 

This means that the two city centers in Berlin are successfully identified. In empirical 

study, all the three methods successfully identified the two city centers in Berlin. This 

well proves the validity of using LBSN data for city center identification.  

 

4.4 Discussion 

In this part, advantages and limitations of the approach in this study are firstly 

discussed. On the one hand, compared to the majority of existing approaches, this 

approach 1) is able to identify city center with a precise boundary and 2) is more 

flexible with cities of different structures, particularly cities that are likely to be 

polycentric. One the other hand, since cities are complex and distinct, feasibility of 

the approach in a specific city is influenced by the knowledge of this city. More 

knowledge about socio-economic characteristics and spatial range of city helps 

yielding a better identification result. First of all, the identification relies much on 

spatial scale. Similar to other identification methods (e.g., kernel density estimation), 

the three methods in this study are influenced by the parameters that control the range 

of spatial relationships between venues. An appropriate range of spatial relationship 

between venues needs some knowledge of city center (e.g., an approximate spatial 

size of city center). Secondly, knowledge of socio-economic characteristics (e.g., 

economic structure, industrial distribution, history and culture, etc.) is necessarily 

required to select appropriate candidate landmarks used to be further matched with 



typical clusters. For instance, in a historical or tourism city, city center is likely to be 

located in the inner city or ‘old city’, and thus central plaza or city hall are more 

considered to be candidate landmarks; whereas in an industrial or financial city, city 

center is likely to be located in the CBD, and thus skyscrapers are more considered to 

be candidate landmarks. Moreover, empirical result demonstrates the validity of using 

LBSN data for identifying city center in spite of data bias. This suggests that data bias 

does not large influence the validity of using LBSN for city center identification. Thus, 

empirical result demonstrates that LBSN data has a large potential and usefulness for 

identifying city center. 

Finally, we further compare the three methods. Table 4 lists some characteristics of 

three methods. Apart from the type, other characteristics are also discussed here. On 

the one hand, DBSCAN needs two parameters whereas other two methods need only 

one. Thus, DBSCAN is relatively difficult to choose appropriate parameters since 

there are two parameters required being determined simultaneously. On the other hand, 

boundaries delineated by DBSCAN are more geometrically regular than those by the 

other two methods (see Figure 5). Moreover, some hints might be useful to city center 

identification in the future. Compared to DBSCAN and GN, LGOG seems to be likely 

to identify few city centers (see Table 3). In other words, seemingly LGOG is 

sensitive to the first largest city center whereas DBSCAN and GN are sensitive to the 

second largest city center. This suggests that intuitively LGOG might be suitable for 

city center identification in a monocentric city whereas DBSCAN and GN might be in 

a polycentric city.      

 

Table 4: Comparisons of the three identification methods 

Method LGOG DBSCAN GN 

Method type 

Clustering method for 

either high values or 

low values 

Density-based 

clustering 

method 

Connectivity- 

based method 

Number of parameters One Two One 

Geometric regularity of boundary Compact Very compact Disaggregated 

Suggested urban structure Monocentric Polycentric Polycentric 

  

 

5 Conclusion and future work 

The experiments in this work show that city centers and their boundaries can be 



detected with high accuracy by using LBSN data. Three different methods have been 

used and compared with each other regarding identification of city centers. In overall, 

they have different advantages and disadvantages, and therefore seem to be suitable 

for cities of different urban structure. DBSCAN method can delineate more 

geometrically regular boundaries but have more parameters required being 

determined than LGOG and GN methods. And LGOG might be suitable for city 

center identification in a monocentric city whereas DBSCAN and GN might be in a 

polycentric city.   

Compared to other mobility data sources (such as traffic flows and mobile phone 

records), LBSN check-in data have some advantages. First, user-generated check-ins 

are available for free in terms of some downloading tools (e.g., API). Second, 

check-in data has a larger spatial scale than traffic flows and mobile phone records, 

since the position of a check-in can be represented by the position of a venue. For 

example, the position of geo-referenced check-in is at the street level, whereas the 

position of traffic flow data is more likely to be at the census tract level.  

Check-in data has some limitations. There is a representativeness issue, e.g., the bias 

of age group and bias of place category when check-in data is used to represent 

human mobility. Normally, young users contribute the vast majority of check-ins. In 

addition, users check in more at some categories of venues (e.g., airport, restaurant, 

shop, railway station, etc.) than other categories of venues. Compared to the 

categories of venues like restaurant, shop or workplace, home venues attract relatively 

few check-ins, because the majority of users do not often check in at home venues 

(e.g., private houses and apartments). The heterogeneity in the popularities of LBSN 

venue categories is somewhat consistent with the heterogeneity in the contributions of 

venue categories to the identification of city center, seemingly reducing the influence 

of LBSN data bias on the city center identification. However, the bias of place 

category still has a negative effect on delineating a precise city center boundary close 

to the actual one. Such negative effect could somewhat decrease with an increasing 

volume of check-ins and active users. Apart from the representative issue, there is a 

‘data sparseness’ problem with check-in data in sparsely populated areas since the 

time period of the data set in this study is 2009-2010 when the social media is not as 

popular as it is currently. Even at present, the data density is still not high in some 

countries or regions (e.g., developing countries). However, the ‘data sparseness’ issue 

could not large influence city center identification since city center is normally 

located in densely populated areas, but could influence some other studies, such as an 

investigation of the commuting patterns of inhabitants. 

Regarding validation of the identification result, firstly, there is not much ground truth 

data of city center with a precise boundary since urban planners and economic 



geographers normally delineate a city center with a vague boundary or just report an 

approximate central location of city center. For urban planners and economic 

geographers, a city center with a relatively precise boundary is more useful than that 

with only an approximate location. Secondly, the majority of the approaches rely 

much on spatial scale. In other words, the results of identification methods (e.g., 

kernel density methods, clustering methods, etc.) are much influenced by their 

parameters that control the range of spatial relationship. Thus, how to find out the 

optimum parameters when there is little knowledge of the study cite is a vital issue.  

Some other aspects should be considered in future research. In order to get a better 

understanding of urban structure and urban dynamics, further analysis of interactions 

between different urban centers in a city should be included, once a large volume data 

set of LBSN is acquired. Moreover, it might be more interesting if the category of the 

venue (e.g., restaurant, office or shop) was to be taken into consideration.  
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