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Figure 4. The Land use classification map of 2010. 

 
A supervised classification based on the Maximum Like- 

lihood algorithm was conducted taking advantage from a set 
of stratified randomly samples resulting in a land use map for 
each set of satellite images. A Maximum Likelihood algorithm 
was applied for all imagery. For each individual time stamp, 
the following steps were taken carefully into account: (i) iden- 
tification of the most representative training sites for each 
land use class resulting from an iterative process of selection, 
(ii) classification of the multispectral images at a pixel level 
of all land cover classes simultaneously, and finally, the pro- 
duction of a thematic land use map by integrating expert know- 
ledge of the study area with remote sensing images consis- 
tently identifying land use and land cover for the region of the 
Golden Horseshoe in Canada. This was done by selecting 100 
training sites for known land use areas based on ground truth 
data. The overall accuracy calculation led to an overall accu- 
racy of 80% for 2010 and 75% for 2000. 

 

3.2. Markov Transition Chains 

The classified land use covers were imported as raster 
data, which corresponds to a matrix representation of a grid of 
cells with a given size. The matrix representation of this spa- 
tial information can thus, add quantified information per land 
use class, aggregated in rows and columns as an output of a 
table format. This is assessed by a Markov Transition Chain 
which allows measuring the state of each cell individually in n 
given states. The n states are assembled by a column vector 
where the component i indicates the probability of a given 
state in one of the time stamps. A Markov transition chain can 
thus be expressed as follows: 
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A transition probability matrix was built with a stochastic 

probability of change for examination of the land use classes 
defined.  

 
3.3. Simulating Future Urban Sprawl 

Assembly of cellular automata for predicting urban grow- 
th has gained exceptional interest among planners and urban 
geography scholars (e.g., Arsanjani et al., 2013b). One of the 
main advantages has been the connection of predicted urbani- 
sation and land use transition processes in the policymaking 
framework (Pontius et al., 2004). The assembly of urban 
growth models rely on the technological advances of geocom- 
putation which enable a multi-criteria approach of adding ad- 
ditional complexity on urbanisation processes. Multi-temporal 
stamps are an asset for determining urbanisation in line with 
available data inventories, that in developed countries beco- 
ming increasingly available. Integrated models bring great ad- 
vantages when dealing with uncertainty of urban prediction, 
particularly in regions where spatial change is of utmost im- 
portance for sustainable regional and metropolitan planning. A 
combination of Multi-criteria with Cellular Automata carries 
interesting results regarding spatial allocation and observance 
of multi-dimensional consequences of land use change. The 
quantitative prediction of past temporal stamps of land use, 
are incorporated with a Cellular Automata (CA) algorithm 
(White and Engelen, 1997), simulating a composite of urban 
growth. The thirty metre grid transition rules calculated throu- 
gh the Markov Transition Chains were applied to all cells per 
iteration factors. The center cell was considered in a 3 × 3 
Moore neighbourhood. The determination of a given state of a 
cell follows as: 
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where ,

t
i jN corresponds to the diffusion factor for its neigh- 

bouring cell, Mi,j adds the Markov Transitions, Wi,j represents 
the weights of the calculated propensity map. The apparently 
linear rules that lead a cell to change neighbouring place by 
automating their probability given a stochastic rule of expan- 
sion in Wi,j, and are then linked to the weighted variables that 
hierarchically cater different weights creating a landscape of 
potential transitions for land use change. These transitions are 
then adjusted with the Markov Transition Chains calculated in 
the earlier step, allowing for a seemingly and effective inter- 
pretation of future urban growth and land use transitions. This 
integrative approach proves quite useful, as it considers a 
combinatory approach of spatio-temporal drivers for urban 
systems (Han et al., 2009). The combination of these data sets 
is then defined as to create urban change scenarios building 
on a suitability map of factors and constraints for urbanisation 
(Pontius and Schneider, 2001). The scenarios themselves are 
then weighted on by a Multi-Criteria Evaluation process. 
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4. Results 

4.1. Urbanisation in the Greater Toronto Area 

A closer inspection on the scattering of land use change 
(Figure 5) between 2000 and 2010 allows assessing some 
relevant results from a land use planning perspective. The 
Toronto downtown core as expected has radically expanded, 
having in 2000 only 21.71% of urban land use, while in 2010, 
this value has increased to 30.03%. The pattern of growth jus- 
tifies further attention, as urban land has increased as a result 
of urban sprawl (Figure 6), reducing agricultural land from 
25.73% in 2000 to 17.53% in 2010. While Barren areas have 
slightly increased, Forest zones have been noted to increase as 
well, as a result of agricultural land abandonment to the urban 
areas, and new creation of forest and park regions within the 
urban cores (Figure 7).  

Figure 5. Land use transition between 2000 and 2010. 
 

 

4.2. Spatio-temporal Change in the Greater Toronto Area 

Growth in the Greater Toronto Area has been witnessed 
since the post-war period, especially given the increase of im- 
migration and population dynamics in Toronto’s periphery. 
This growth in the GTA has been a result of rapid demogra- 
phic increase, which has led to the diversity of the Greater 
Toronto Area’s landscape. The municipal plans to develop re- 
gional infrastructures must take into account land-use change 
allied to Toronto’s urban metabolism (Sahely et al., 2003). At 
present, the Toronto’s CMA is rapidly growing, and as indica- 
ted by the Ministry of Infrastructure “Places to Grow” Act, 
will continue to do so in the coming decades. The vision of 
the Ministry is to cater the sustainability of urbanisation pro- 
cesses in the Golden Horseshoe and sustain the unique ecolo- 
gical diversity as well as great economic potential of con- 
tinued growth. While the metropolis will continue to grow, it 
is important to consider the sustainable strategy of comprising 

agricultural and rangeland in future as unmanned urban sp- 
rawl may jeopardize fragile agricultural regions. The comple- 
xity of this urbanisation process is examined through past 
anthropogenic land-use profiles, which suggests a concerning 
amount of conversion of agricultural land into urban (19.94%) 
in the future (Table 2).  

The Markov Transition Chain allows a probability inter- 
polation of land use change in the Greater Toronto Area, in 
particular, looking at the distribution of urban land use several 
important findings are registered: (i) economic growth and in 
particular, the growing service sector in the GTA is leading to 
increased urbanisation , particularly in barren areas, followed 
by agriculture land, (ii) Forest areas have a tendency to in- 
crease in urban areas due to creation of leisure facilities and 
parks in the urban cores, (iii) Agricultural land has a tendency 
to be transformed either to Rangeland or Urban areas. Pre- 
vious analysis carried out for 1990 in comparison to 2000 
confirms the tendency of agricultural land. As expected, urban 
land use is the most dominant land use in the Greater Toronto 
Area landscape, followed by impacts on Forest, Rangeland 
and Agriculture. In fact, urban sprawl is predicted to continue 
in the Greater Toronto Area in the currently rural and agri- 
cultural areas of the region’s hinterlands. Given this informa- 
tion, the following relative weights were generated through 
the Analytical Hierarchy Process. 

 
Table 3. Results of Word Matrix  

Amend Area Avenue Build 
City Community Design Develop 
Housing Land Map Nature 
Neighbourhood New Park Space 
Street Transit   

 

4.3. Model Calibration, Evaluation, and Simulation of 
Future Urban Growth 

The underlying factors for urban expansion were expos- 
ed by means of the transitional probability, ancillary spatial 
datasets and available governmental information on future 
urban planning strategies for southern Ontario. These multiple 
criteria were integrated in an Analytical Hierarchy Process   
(AHP) where weights of each criterion were established. This 
followed a fuzzy standardization process as discussed by and 
further explored in line with larger urban areas (Feng et al., 
2011), giving a set of function derivatives (J-shaped, linear  
or sigmoid) as well as combination of intervening variables 
such as land use change promoted by the Markov probabi- 
lities of transitions of land use types and weights (Table 3). 

Table 2. Markov Chain Probabilities of Transition per Land Use Class  

  Probability of changing into 

 Urban Barren Agriculture Rangeland Forest 

Given 

Urban 75.04% 2.24% 4.19% 7.39% 10.96% 
Barren 54.66% 22.95% 8.82% 5.66% 2.72% 
Agriculture 19.94% 1.56% 36.14% 24.16% 18.10% 
Rangeland 13.83% 0.59% 23.85% 28.72% 32.91% 
Forest 17.03% 0.14% 5.73% 16.45% 60.26% 
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The variables were chosen through a text mining approach, 
considering the following documents: “Places to Grow” and 
“Toronto’s Growth Plan”, both available through the Ministry 
of Infrastructure. These documents were parsed, filtered and 
converted into corpus matrices for textual mining. The textual 
mining was carried out to find the words that were present 
more than 75 times in the documents. These words were then 
organized by typology and geographical weights were thus 

considered (Table 3). 
In this sense, the underlying pattern suggests a higher 

focus on the existent neighbourhoods, while integrating new 
urban cores. Improvement is presented by the addition of 
parks, and transit as well as street optimization, suggests a 
central role regarding the importance of infrastructure. The 
expansion of the Greater Toronto Area seems to be commu- 
nity driven.  

 
Figure 6. Urban land use change between 2000 and 2010. 

 

 
Figure 7. Agriculture land use change between 2000 and 2010. 
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The text mining approach allowed to forward the most 
adequate factors, and their influence over generating functions 
and control points, that manifested a more qualitative percep- 
tion of potential weights. In this sense, and given the conclu- 
sions found in the existing description of plans, distance from 
built-up areas were considered of great importance, followed 
by distance from roads and the preference of scenic land- 
scapes, following the pertinence of city design. A Multi-crite- 
ria Evaluation of weights was thus elaborated based on the 
preference of the narrative planning structure (Table 4). 

 

Table 4. Distribution of Weights per Factor  

Factors Functions Control points Weights 

Distance 
from roads 

J-shaped 0-50 m highest suitability 0.262 
50 m - 1 km decreasing 
suitability 
> 1 km no suitability 

Distance 
from water 
bodies 

Linear 0-50 m no suitability 0.187 
50 m - 300 m highest 
suitability 
>300 decreasing suitability 

Distance 
from 
built-up 
areas 

Linear 0-10 km decreasing 
suitability 

0.332 

> 10 km no suitability 

Slope Sigmoid 0 % highest suitability 0.091 
0 - 15% decreasing 
suitability 
> 15% no suitability 

Land use 
categories 

(Table 2) n. a. 0.128 

As to allow adequate prediction of future land use, evalu- 
ation of land use classification was carried out. An integrative 
approach of predicting land use based on the land use of 1990 
and 2000 was conducted. The simulated land use for 2010 
was cross compared with the ground truth of land use for 
2010. An overall kappa index (Pontius et al., 2004; Arsanjani 
et al., 2013a) of 82% was achieved. According to Landis and 
Koch (1977), a kappa index larger than 0.8 refers to almost 
perfect accordance. The obtained kappa index validated the 
calibration of the approach in quantifying urban sprawl. By 
using previously generated transition area matrices of sprawl 
within 2000-2010, the land use map of 2020 and 2030 are si- 
mulated as illustrated in Figure 8. 

 

5. Conclusions 

The combination of Cellular Automata with a text mining 
approach for weight calculation and Markov chains, allowed 
for the prospection of future urban growth of the Greater 
Toronto Area for 2020. The figure above (Figure 8) shows ur- 
banisation from 2000 to 2030 (upper part). While urban grow- 
th seems to continue to increase in density in the Toronto core, 
this may be expected to decrease in coming decades. Urbani- 
sation will however increase significantly in the northern area 
of the Greater Toronto Area, particularly in Aurora, East-Gwi- 
limbury, Markham, Newmarket, Richmond Hill, and Whit- 
church-Stoufville (lower part of Figure 8). This is of particular 
concern given Ontario’s green belt, while still protected, may 
register accruing change in the forthcoming decades if clear 
legislation and continued population growth is present. Agri- 

 
Figure 8. Urban change in the Toronto CMA from 2000 to 2030. 
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cultural land will be lost significantly by 2020, in particular in 
the perimeters of Toronto’s hinterlands, given continued urban 
pressure in the next years. The connectivity of urban Toronto 
with other regions in southern Ontario along the Greater Gol- 
den Horseshoe (Vaz and Bowman, 2013), suggest that this re- 
gion must be carefully planned and that the Toronto core plays 
a vital role in the sustainable development of southern Ontario 
(Girard, 2007). The province of Ontario is rapidly changing 
(Muller and Middleton, 1994) and should be analysed through 
integrated approaches of urban modelling and remote sensing 
techniques (Banzhaf et al., 2009) thanks to the technical ad- 
vances in the last decades. Geographic Information Systems 
play an increasingly important role in sustainable planning 
(Birkin et al., 1996). Land-use dynamics is a complex phenol- 
menon which should be addressed through combined methods 
(Lambin et al., 2001). The usage of non-linear modelling and 
decision opinions through text mining allow to approach new 
combinatory assessments of land-use change, in particular in 
regions where fragmentation seems high and recurrent (Li et 
al, 2010).  

It must be noted that due to rapid economic and social 
developments of Canadian cities in the last decades, further 
physical developments in the Canadian cities are theoretically 
expected, however this investigation confirms this matter in 
practice as well. Although the importance of rapid urban ex- 
pansions in Canada is high, a few studies on monitoring the 
spatiotemporal developments of Canadian cities have been ca- 
rried out and reported, hence an urgent demand from the 
urban planners and policy makers have been called for further 
studies taking these issues into account. More importantly, 
more investigation on adapting novel modelling techniques 
integrating GIS algorithms and remote sensing data, which 
take the domestic circumstances of the urban patters, must be 
carried out in order to correspond the identified research gap. 
Because, the essence of land use dynamism in the Canadian 
cities is unique due to its social, economic, and physical land- 
scape characteristics. In this study, the simple Markov cellular 
automata model was customized in order to take correspond- 
ding socio-economic variables into account to be able to sense 
the patterns of land use changes.  
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