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ABSTRACT(300 words): Recently, mobile laser scanning (MLS) has emerged as an efficient means to acquire 

massive 3D point clouds along urban road corridors for the several applications such as building footprint 

reconstruction, facade modeling and road traffic inventories. In this paper, we propose an automated strategy to 

address the issue of detecting 3D individual trees in urban traffic corridors using MLS data. Firstly, an approach 

based on analyzing the features in the spatial accumulation map of MLS point cloud is developed to identify man-

made objects from natural objects by sequentially extracting man-made structures. The remaining points of natural 

objects should mainly contain vegetation and few vertical disturbing objects. This point class is further delivered to 

the next step to undergo a 3D segmentation process to obtain individual object instances by using a spectral 

clustering method. Once the point cloud is partitioned into various point segments corresponding to object instances 

such as single trees, poles or traffic signs, different fine classes can be further distinguished by using local shape 

descriptor of point segments. After the refinement of the segmentation, vegetation can be separated from other 

disturbing objects and detected as individual trees. An experimental study shows and evaluates the feasibility and 

capability of the proposed strategy towards detecting 3D individual trees from MLS data of complex urban 

corridors. 

 

1. INTRODUCTION 

Vegetation analysis has recently become a very important topic in the community of urban remote sensing. The 

results of such research can be potentially used in a wide range of data modeling across diverse applications, such 

as 3D city modeling, road inventory, natural resources mapping and renewable energy use (Secord and Zakhor, 

2007; Jaakkola et al., 2010). So far imaging sensors are mostly used to characterize the urban vegetation from the 

airborne viewpoint. However, the detection is limited to describing and measuring the tree canopy surface and its 

2D outline. On the other hand, in addition to extracting man-made objects airborne laser scanner (ALS) is 

increasingly used to acquire the 3D information about urban green areas such as vegetation in parks (Mallet et al., 

2008; Hecht et al., 2008).. The methods for extracting urban objects from ALS data usually consist of three steps: 

geometric filtering, feature calculation and classification (Mallet et al., 2008). Other methods included an object-

based point cloud analysis strategy for object extraction (Yao et al., 2011). Former studies showed that vegetation 

in city canyons still cannot be extracted very well from such data sources and imposed a great challenge to the data 

acquisition from an airborne platform. Therefore, a potential integration with mobile laser scanning system (MLS) 

is needed to accomplish the task due to synergistic benefits. Unlike ALS data, vehicle-borne MLS acquires object 

information from a ground perspective and is capable of providing high-fidelity and comprehensive data for the 3D 

modeling of objects in the vicinity of city transportation networks (Yang et al., 2012; Rutzinger et al., 2011a). It 

leads to a great potential for object extraction at street level and high-fidelity reconstruction of object models at 

single instance level. Although MLS data cannot be extended to cover the complete city area, it can be used as 

reference data for the model calibration by transferring the specific knowledge (e.g. fine tree species, stem diameter, 

etc.) to airborne observations. 

 

However, most of recent works related to MLS data analysis focused on extracting man-made objects by designing 

class-specific features and adopting model-based approaches. To classify and extract various objects from MLS 

data, basic geometric structures such as plane and vertical pole are first extracted to represent the primitives for 

urban objects. Former works (e.g. Yang et al., 2012; Rutzinger et al., 2011a) presented approaches for the automatic 

extraction of vertical walls, road markings and poles, respectively. So far only little attention is paid to the detection 

and characterization of trees along urban road corridors from MLS data, although the analysis and estimation of 

vegetation parameters using ALS and TLS data have been intensively investigated in the context of forestry science 

(Maas et al., 2008). Since MLS is installed on a moving vehicle platform, it can not only acquire the tree object 

with high-detailed geometry but also cover lager areas. Tree features such as stem diameter and branch structure 

can be expected to be resolved with a much better accuracy. Additionally, Rutzinger et al. (2011b) have developed 

a strategy for the extraction and modeling of trees from MLS data. The tree detection algorithm is based on 

applying a segmentation followed by a classification. The detected point clouds of high vegetation are delivered to 

the model parameterization process where crown length, stem diameter and crown shape are determined. Most 



recently, Monnier et al. (2012) have presented a tree detection method from heterogeneous and complex 3D point 

clouds acquired for the occlusion mapping in dense urban environments. This method couples 2D and 3D methods 

which represented the local geometrical shape of point clouds by 3D descriptors and retrieved individual objects by 

clustering similar points on the descriptor accumulation map.  

 

The goal of this work is to develop an automated workflow for individual tree detection in city road corridors from 

MLS point clouds, which could retain the important geometric information for 3D tree modeling and 
characterization. The constructed tree models not only contribute to building a complete road tree cadastral but also 

to providing an accurate data basis for estimating biophysical properties at the single tree level. Firstly, an approach 

of analyzing the features in the horizontal accumulation space of MLS point cloud is developed to identify man-

made objects from natural objects. The remaining points which mainly contain vegetation and some disturbing 

vertical objects are furthered delivered to a 3D segmentation process to obtain individual object instances. After the 

refinement of the segmentation step, the vegetation can be separated from other disturbing objects and detected as 

individual trees. 

 

2. IDENTIFYING MAN-MADE OBJECTS IN MLS DATA BY CLASSIFICATION 

In general, off-ground urban objects can be divided into man-made and nature objects, whereas man-made objects 

are referred to a variety of buildings, traffic facilities, power lines, poles, and cars, while nature objects are referred 

to vegetation. In this section, the approach for identifying man-made objects from natural objects is presented. The 

process consists of three steps: the preprocessing; the extraction of seed points for man-made objects; and the 

extraction of man-made objects. 

 

2.1 Preprocessing 

In this stage, ground points are detected by analyzing the height histogram (Yao et al., 2010) and are further 

delivered to a surface fitting algorithm (Gridfit) to obtain a ground level raster. The vertical distance of each point 

to the ground level is calculated as the height above the ground level (AGL). Man-made objects can be separated 

into three classes according to the AGL height: (i) fences or cars whose AGL heights are less than two meters; (ii) 

buildings whose AGL heights are larger than two meters; and (iii) power lines hanging in the air and having the 

lowest AGL height of five meters. In the vertical dimension, different objects could co-exist. For instance, a vehicle 

might be parked under a tree, while branches of a tree grow over the fence. This leads to error detection when using 

the method of projecting 3D points on a horizontal accumulator used in Hammoudi, (2009). To overcome such 

deficiency, the off-ground points of MLS data are divided into three layers according to the AGL height.  

 

2.2 Extracting seed points for man-made objects 

The second step aims to extracting seed points of man-made objects in each height layer. The ideal is rooted in the 

fact that man-made objects feature geometric regularity like vertical planes, while vegetation reveals a huge 

diversity of shapes and point distribution. If 3D points are projected onto 2D horizontal plane, the position where 

man-made objects are located will indicate a large accumulation density.  

 

For each height layer, an horizontal accumulation space of a 2D     grid is created respectively, where   
                    , and                       . The cell size (  ,   ) depends on the density of MLS 

data. In this work, the grid cell size is set to 0.25m in square. It counts how many points fall within each cell. 

Vertical structures such as walls, fences, poles, and trucks of trees are scanned with high density and accumulated 

with large number of points when projected onto horizontal cells. Consequently, for a cell in which a large number 

of points fall, the centroid of these points is calculated and recoded for the cell. If there are only few or even no 

points falling within a cell, there might be leaves or horizontal objects hanging over the cell. These points are 

omitted as noises and the cell is kept as empty. The process uses a global threshold of ten points. 
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The result of this process is called footprint map, where not only the footprint of buildings and vehicles, but also 

roots of poles and trees are recorded in cells, as well as shrubs with high dense leaves. In order to get rid of these 

influences, linear segments are indicated, since other than that of buildings or vehicles the footprint of vegetation 

always forms as a cluster. The footprint map is first converted into a binary image by taking grid cells as pixels, 

where the pixel value is set as 1 for a non-empty cell and 0 for an empty cell. Then edges are detected using Canny 

operator (Canny, 1986) with sensitivity thresholds of           and the sigma of the Gaussian filter is set to 1. The 

extracted line segments (Figure 1d) are then aggregated when two line segments are collinear. In the next step, the 

detected edges are filtered by applying a length threshold which is set to two meters, as the shortest edge of a 

building footprint should be longer. On the other hand, the long side of a car is normally longer than two meters. As 

the result, only line segments of building footprints, fences and vehicles can remain after filtering. When 

transferring extracted line segments back to the footprint-map, a cell should contain a set of seed points of man-



made objects, if the cell is located on or closed to a line segment. Therefore, a rectangular buffer zone is generated 

around a line segment by taking the long side parallel to the line segment and a width of one meter (      ) with 

the consideration of the accuracy of line extraction and noisy measurement. The rectangle is generated as a buffer 

zone for the line segment according to Eq.2.  
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     )] ,    is the middle point of the line 

segment      ,   is the length of the line segment, and   is the orientation. After buffer zones are generated for 

extracted line segments, the spatial relationship between the buffer rectangle and the laser points are examined 

regardless of the vertical dimension. If a laser point falls into a buffer zone, it is regarded as the seed point of a 

man-made object.  
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Figure 1: Extracting 3D points on vertical structure of man-made objects 

 

2.3 Identifying man-made objects by distinguishing seed points 

The last step provided seed points of man-made objects in the three layers. Every cluster formed by seed points 

corresponds to an individual urban object. They will be distinguished to different types of objects at first. As 

indicated in step of pre-processing, cars and fences exist only in the lower layer (    ), while power lines can 

only be found in the upper layer (    ), and building points could be found in every layer. To this end, the seed 

points are distinguished by cross-comparison through the three layers.  

 For a cluster        in the lower layer, if there is a cluster         at the same location in the middle layer, 

then the points of the cluster        are seed points of a building. Otherwise, the points of cluster        

are seed points of a car or a piece of fence.  

 For a cluster        in the upper layer, if there is no cluster in the same location in the middle layer, then 

the points in the cluster        are seed points of power lines.  

Point pairs are found out between two clusters of seed points (e.g.                   ,                    ) on 

different layers. Two points         are assumed to be paired if they are almost located at identical position (the 

distance is smaller than 5cm,              ) on the horizontal plane. If most of points of a cluster in a layer can 

be paired to points of a cluster in another layer with a condition: 
 

        
    , the two clusters are deemed to be 

at the same location, where   stands for the number of the paired points, min(M,N) indicates the minimal number 

of points within the two clusters.  

 

After seed points are extracted for different man-made objects, 3D points of which can be identified according to 

topological relations to the seed points. This is achieved by a two-step method. Firstly, the convex hull of each 

cluster of seed points is calculated in order to reduce the search area. The spatial relation of points falling within the 

convex hull of the seed points is calculated. The convex hull is calculated for each cluster of seed points: 

 the seed points of an object class are checked regardless of their heights. If a point is located inside of (and 

on) the convex hull of the cluster of seed points, this point is regarded as candidate point of object class  



In the next step, a circular neighborhood is generated for every seed point in the cluster, whose radius is set to 0.5m. 

Then, candidate points of each object class are examined with respect to the spatial relationship to the circle. Those 

candidate points are regarded to ought to be projected to the same footprint as the seed point, if they fall within the 

circle of this seed point. And they are the points belonging to the object which is represented by the cluster of seed 

points. Finally, all the points belonging to the certain object class are identified. The points which do not fall in any 

circle of seed points will be released from the candidate points. So far, man-made objects are extracted and 

distinguished. The remaining points represent natural objects consisting of vegetation (trees), poles of power lines, 

and street lights. 
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Figure 2: Seed points of different types of man-made objects 

 

3. SEGMENTATION OF 3D INDIVIDUAL TREES 

After natural objects are separated from man-made objects, 3D individual objects are to be segmented by using a 

spectral clustering method performed to analyze a graph structure of point clouds. The similar algorithm has been 

successfully applied to airborne LiDAR data (Reitberger, et al., 2009; Yao and Wei, 2013). However, MLS data 

feature a much higher point density and model fidelity which posed a new challenge for 3D tree segmentation. It 

will be of great interests to examine whether the spectral graph clustering method can also be successfully applied 

to MLS data and how it will perform. 

 

Likewise, point clouds of natural objects can be converted into the Object Height Model (OHM) in which the object 

height is recorded in a 2D grid cell. Then, single objects are segmented by delineating contours in the OHM. 

However, all the OHM based segmentation methods suffer from the drawback that sub-dominated object in the 

lower height layer cannot be recognized since they are invisible in the OHM. The key idea of the 3D segmentation 

technique is to apply the normalized cut segmentation to a voxel structure (e.g. voxel size = 0.5m) of point clouds 

representing natural objects. Here, the voxel structure especially makes sense to the MLS data, since the point 

density of MLS data is very high and the required computational effort can be considerably reduced by using the 

voxel as the segmentation unit. Voxel size is adjustable according to the point density and average size of trees to 

be segmented. The segmentation uses the positions ( , , )i i ix y z  of the laser reflections and optionally the pulse 

intensity Ii. The normalized cut segmentation applied to the voxel structure of point clouds is based on constructing 

and analyzing a region adjacency graph G. The two disjoint segments A and B of the graph are found by 

maximizing the similarity within each segment and minimizing the similarity between the two segments via solving 

the cost function:  
( , ) ( , )

( , )
( , ) ( , )

Cut A B Cut A B
NCut A B

Assoc A V Assoc B V
                                                              (3) 
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   as the total sum of weights between the segments A and B and 
,

( , ) ij

i A j V
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as the sum of the weights of all edges ending in the segment A. The weight wij specifies the similarity between each 

two graph node voxels and are a function of the LiDAR point distribution and features calculated from Ii or other 

spectral domain. A minimum solution for Eq. (3) is found by means of a corresponding generalized eigenvalue 

problem. It turned out that the spatial distribution of the LiDAR points mainly influences the weighting function. 

Consequently, the weighting matrix consists of following similarity functions between voxel i and voxel j which is 

located within a cylinder of radius rXY around the voxel i: 

 
( , ) ( , ) ( , )    if ( )

( , )
0                                            otherwise
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The components X(i,j) and Z(i,j) weight the quadratic Euclidian distances between the voxels, where X(i,j) is the 

horizontal and Z(i,j) is vertical distance. The component F(i,j) describes the quadratic Euclidian distance between 



mean LiDAR intensities The position and height of a segmented object is defined as the centroid and maximum 

height of the tree segment from the point cloud. 

 

Since the classified point set of natural objects represent not only vegetation (trees) object but also some other 

vertical objects including poles, street lights and traffic signs, 3D segmentation results need to be refined in order to 

exclude disturbing objects. This refinement process can be done based on the shape analysis of each point segment, 

where a shape descriptor is created to measure and discriminate point segments, since almost all the non-tree 

objects within the class are characterized by the pole-like form. The shape descriptor for measuring the maximal 

diameter and area of the horizontal distribution of point segments are the most useful features, which can be derived 

by analyzing the convex hull of 2D projection of point segments onto the x-y plane. 

 

4. EXPERIMENT AND ANALYSIS 

 

4.1 Dataset  

The point clouds of urban road corridor used in this study were captured by an Optech Lynx Mobile Mapper system, 

which consists of two Optech laser scanners, one GPS receiver, and an Applanix IMU, which collects LiDAR data 

at more than 100,000 measurements per second with a 360° field of view. The point clouds of two sites were 

selected for assessing the performance of the proposed method. The two test sites are located in an urban residential 

area with dimensions of 190 m by 130 m. It contains vegetation (e.g., trees, bushes), grass field, fences, buildings, 

power lines, multi-lanes roads, and cars. Reference trees were selected by human inspection and their position and 

height were obtained by manually locating the tree-top position directly in LiDAR point clouds and measuring its 

height above the ground level. 

 

4.2 Results and discussion 

The detected results are evaluated by linking detected trees to the reference ones. Segmented trees that are linked to 

one tree position in the reference are so-called ‘detected trees’, if (i) the distance to the reference tree position is 

smaller than 1.5 m and (ii) the height difference between the reference and detected tree is smaller than 15% of top 

tree height. If a reference tree is assigned to more than one tree position in segmentation results, the tree position 

with the minimum distance to the reference tree is selected. The evaluation measures are defined as follows: 

Completeness = Numbertrue positives/Numberreference trees; Correctness = Numbertrue positives/Numberdetected trees; Tree height 

deviation = | Heightdetected tree – Heightreference tree |; Tree position deviation = sqrt[(Xreference tree - Xdetected tree)
2
 + (Yreference 

tree -Ydetected tree)
2
]. 

 

            

Figure 3: Extraction and representation of 3D individual trees in two test sites 

 

The detection results of 3D individual trees for the two datasets are illustrated in the original point clouds using 

different colors in Figure 3. The quantitative results of the evaluation can be found in Table 1. A promising result 

has been obtained for the first dataset while the result of second one is slightly better. Although the point density 

and sensor system of the two datasets are identical, the results of the two datasets are not directly comparable, since 

the scene complexity, structure and the composition of tree species could still lead to different impacts on algorithm 

performance. It can be seen that properties of the first dataset, such as more dense trees, building occlusion and 

complex residential courtyard, could make the detection of individual trees in this area more difficult. Most of miss-

detected trees in this case are traced back to the misclassification caused by confusion with adjacent man-made 

objects, building occlusion and under-segmentation. The position and height of extracted individual trees have been 



determined and compared to that in reference data. The mean and standard deviation of residuals for the tree 

position and height reached 1.15m/0.86m and 0.9m/ 0.82m, respectively. 

 

Table 1: Quality for individual tree detection 

Dataset I Dataset II 

Completeness  Correctness Completeness Correctness 

80.7% 70.2% 81.2% 75.5% 

 

5. CONCLUSION 

This paper has presented an automated approach to detect 3D individual trees along road corridors of complex 

urban areas based on employing MLS data. It is a rigorous attempt made to characterize the individual trees along 

urban road corridors in full three dimensions from a vehicle platform. The experiments upon two urban datasets 

showed that promising results can be achieved for both residence areas. Up to 81% of dominate trees located along 

urban road corridors can be detected and characterized in the point cloud via 3D segmentation, while the promising 

accuracies for both position and height of detected trees are achieved. Since it is still impossible to acquire 

reference trees in true 3D, the scheme to evaluate detection results with respect to the tree position and height is 

believed to be a plausible method for performance assessment at this stage. Future works will be put on deriving 

extended tree properties based on 3D segments such as stem diameter and crown base height, and studying the 

feasibility of distinguishing tree species and vitality conditions. 
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