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A B S T R A C T   

There is an urgent need to develop new methods to monitor the state of the environment. One potential approach 
is to use new data sources, such as User-Generated Content, to augment existing approaches. However, to date, 
studies typically focus on a single date source and modality. We take a new approach, using citizen science 
records recording sightings of red kites (Milvus milvus) to train and validate a Convolutional Neural Network 
(CNN) capable of identifying images containing red kites. This CNN is integrated in a sequential workflow which 
also uses an off-the-shelf bird classifier and text metadata to retrieve observations of red kites in the Chilterns, 
England. Our workflow reduces an initial set of more than 600,000 images to just 3065 candidate images. 
Manual inspection of these images shows that our approach has a precision of 0.658. A workflow using only text 
identifies 14% less images than that including image content analysis, and by combining image and text clas
sifiers we achieve almost perfect precision of 0.992. Images retrieved from social media records complement 
those recorded by citizen scientists spatially and temporally, and our workflow is sufficiently generic that it can 
easily be transferred to other species.   

1. Introduction 

Environmental change is one of the key challenges of the 21st cen
tury. Understanding this change and developing effective policies to 
mitigate it, leads to a need for data which can be used to develop in
dicators capturing, for example, drivers, pressures, states, impacts and 
responses of the environment (Masó et al., 2020). Despite the massive 
growth in data production witnessed in recent decades, the United Na
tions Environment Programme recently reported that for 69% of all 
environmental indicators insufficient data were available to allow 
continuous monitoring (UNEP, 2019). This lack of data has led to 
increasing interest in new data sources, and their possible use in the 
production of official statistics, as demonstrated through the creation of 
the UN Global Working Group on Big Data for Official Statistics which 
explicitly recognises social media data as a potential source. 

In parallel to this policy driven need for new data sources as inputs to 
indicators, researchers in Geographic Information Science have sought 
to describe the properties of new data forms exploiting, as Goodchild 
(2007) memorably proposed, the idea of ‘citizen sensors’. This has led to 
the use of a wide range of terminology characterising digital data 
ranging from the general e.g. User-Generated Content (UGC), through 
the more explicitly spatial Volunteered Geographic Information (VGI) 
(Goodchild, 2007) and distinguishing between different modes of pro
duction (active and passive crowdsourcing (Haklay, 2013)). Most 
recently, the potential of digital platforms has led to a rapid growth in 
projects categorised as citizen science, where the broader public actively 
contributes to scientific knowledge, through data collection, analysis 
and hypothesis generation (Trojan et al., 2019). 

One area currently witnessing particularly rapid growth is the 
application of new data sources to create a wide range of ecological 
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indicators. These relate to themes including biodiversity (e.g. the pres
ence or absence of species (Jeawak et al., 2018)), the added value of 
protected areas (e.g. by exploring patterns of visitation (Hamstead et al., 
2018)) and more generally cultural ecosystem services (e.g. ways in 
which humans benefit through experiencing nature (Lee et al., 2019; Lee 
et al., 2022). Many current efforts to develop ecological indicators using 
new data forms take the form of case studies, and demonstrate how 
indicators can be developed using bespoke methods at specific locations 
and using a single data source (Ghermandi and Sinclair, 2019). There is 
a pressing need for the development of more generic and scalable 
workflows allowing creation of indicators of the state of the environ
ment, with a focus on integrating all available data sources related to a 
study area. Such approaches should consider how different forms of UGC 
can usefully be combined. One possibility is to use data created by expert 
contributors in the form of citizen science to train and evaluate models 
run on much larger, heterogeneous and passively generated social media 
datasets. Creating indicators using diverse data sources thus also re
quires that attention be paid to data integration and considering how 
data quality varies with respect to different platforms. 

Particularly promising with respect to environmental indicators are 
social media data which include both images and some form of related 
metadata, for example in the form of locations, timestamps and textual 
descriptions. These data have already been used to explore the envi
ronment, for example by identifying the presence of particular species 
(Toivonen et al., 2019) or human interactions with the environment 
(Figueroa-Alfaro and Tang, 2017). Methods used in such endeavours 
may use purely manual annotation, extract information using keywords 
and simple heuristics or apply machine learning to extract records 
containing useful content with respect to, for example, individual spe
cies or concepts (Edwards et al., 2022). However, most approaches 
presuppose that the information extracted is not available through other 
modalities, and few studies have explored the comparative benefits of 
analysing images and text (You et al., 2016). Where different data 
sources have been used, they are typically compared rather than com
bined (Tenkanen et al., 2017), leaving a gap with respect to policy 
relevant indicators - where the aim is to document, as completely as 
possible a relevant concept, irrespective of whether one or multiple data 
sources are used. 

In this paper we propose, implement and evaluate a workflow taking 
advantage of citizen science data documenting and recording sightings 
of birds, and more specifically red kites (Milvus milvus). Analysing social 
media data until recently has often used simple keyword-based methods 
to perform an initial filtering or search step, meaning that content tag
ged in other ways was not found. However, improvements in content- 
based classification now mean that it is also possible to use off-the- 
shelf, pre-trained algorithms to reliably identify predefined classes 
such as presence of buildings, people or birds in image data with 
reasonable accuracy. Our workflow uses these improvements, together 
with training data generated from citizen scientists, to identify further 
relevant sightings in a social media dataset using both textual metadata 
and image content. Since both datasets include metadata capturing 
unique users, locations, times and descriptions of sightings, we can 
describe not only where red kites were seen, but also when, by whom 
and potentially in what context. In developing our workflow, we aim to 
assess the performance of individual steps so that we can evaluate the 
added value of both text and image analysis. Having evaluated the 
workflow, we explore the properties of the complete integrated dataset, 
in particular the extent to which different data sources complement one 
another in describing variation in our target species. 

2. Background 

Our starting point is twofold. Firstly, the opportunities afforded by 
new data forms in environmental monitoring have been discussed 
extensively, not only in research but also by policymakers (Zaccheddu, 
2019). Secondly, the need for new data sources has accelerated as 

increasing attention is paid to measuring progress towards the Sustain
able Development Goals (SDGs). One area where Geographic Informa
tion Science can make a concrete contribution is in developing robust 
and reusable approaches to spatio-temporally explicit indicators 
recording change of state across a range of scales. MacFeely, 2019 set 
out opportunities and challenges with respect to the use of ‘big data’ for 
compiling SDG indicators. Key opportunities include improved timeli
ness, a reduction in the costs and organisation related to data collection, 
potentially finer spatial and temporal granularities and more trans
ferability between countries. Challenges of relevance to our work 
include a reliance on data produced by commercial actors and the im
plications of reusing data without the explicit consent of users. Fraisl 
et al., 2020 in a recent desktop study reported that big data is “already 
contributing” to the monitoring of five SDG indicators, and that citizen 
science “could contribute” to 76 indicators. These potential indicators 
were not evenly spread across all SDGs , with the most potential being 
suggested for SDGs 11 and 15 (Sustainable cities and communities and Life 
on land respectively). However, most examples of the use of such data 
remain experimental (Van Halderen et al., 2021), relying on bespoke 
methods and datasets. 

Interest in the potential of big data, or more generally new data 
sources, for indicator production has been fuelled by an explosion of 
interest in data driven research, made possible by both increased 
accessibility to a wide variety of novel data sources and increasing ease 
of use of technology to build workflows incorporating, for example, 
classification tools trained on very large datasets and running externally 
in the cloud (Yang et al., 2017). 

In Geographic Information Science, Goodchild’s seminal 2007 paper 
(Goodchild, 2007) set out a definition of what he termed Volunteered 
Geographic Information (VGI). Goodchild described VGI as a special 
case of what had already been termed User-Generated Content (UGC), 
where private citizens created geographic information, something 
which had previously almost exclusively been the role of state. Good
child’s definition was very broad, and encompassed not only projects 
where citizens actively worked together towards a shared aim (e.g. 
OpenStreetMap (Haklay and Weber, 2008)), but also those where 
geographic information was essentially a byproduct and data were 
shared for personal or social purposes (e.g. Flickr (Spyrou and Mylonas, 
2014)). These differences led to many papers exploring the motivations 
of contributors to VGI (e.g. Larson et al., 2020; Measham and Barnett, 
2008), and are important to our work for two reasons. Firstly, since our 
aim is to create an indicator recording sightings of a specific species 
using different forms of VGI, we assume that data produced by experts in 
citizen science projects is of sufficiently high quality that we can use it to 
train models (Kosmala et al., 2016). Secondly, since our indicator spe
cies, the red kite, is highly visible, relatively easy to identify and has 
cultural significance, we assume that images uploaded to social media 
platforms include records describing this species. 

The approach taken to creating an indicator is highly dependent on 
the data used and the ways in which they were produced. For example, 
where citizen scientists have actively recorded sightings of a species, and 
these sightings overlap with an indicator need (Robbins et al., 2020), 
then questions with respect to data quality might relate to completeness 
(e.g. are sightings related to accessibility, and thus biased towards 
populated areas). If the data produced are found to be broadly compa
rable to some gold standard, then they can in principle be used directly 
for indicator production. However, where the data were produced for 
other purposes, as is the case for example with social media data, 
additional preprocessing steps are required. These can include querying 
for records in a particular spatial region and over a given temporal in
terval, before extracting only relevant records. In our case, where a 
particular species is of interest, typical approaches analyse data using 
either simple keyword extraction (e.g. by compiling lists of potentially 
relevant terms) applied to metadata, followed by some form of disam
biguation or classification to remove records using matched terms in 
another sense. Progress in off-the-shelf image classification approaches 
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has led to analysis based solely on keywords assigned to images by 
machine learning classifiers (Burke et al., 2022) especially where the 
identified classes are relatively broad (e.g. presence of water, green 
space or trees). Where classifications are more fine-grained, common 
approaches still involve human annotation of metadata and image 
content, for example relating activity types to cultural ecosystem ser
vices (Pickering et al., 2020). Many current approaches to analysing 
image based social media focus on analysing either textual metadata or 
image content, with surprisingly few attempting to combine information 
derived from both modalities simultaneously, even though existing work 
suggest potential improvements in performance (You et al., 2016). 

All of these advances have led to a plethora of applications of direct 
relevance to environmental indicators using, mostly, social media data 
and occasionally also leveraging content produced in citizen science 
projects. Toivonen et al., 2019 set out in a review the potential value of 
big data for biodiversity monitoring and conservation science. Many 
applications are tailored towards understanding of human-nature in
teractions in space and time, for example by identifying visitor hotspots 
(Tenerelli et al., 2016). Analysing and understanding the preferences of 
visitors (Hausmann et al., 2018) can provide important information for 
policymakers seeking to design and manage attractive and sustainable 
nature reserves and protected areas. Data traces found on social media 
can also identify, for example, hot-spots of invasive alien species 
(Daume, 2016) and illegal trade in wild-life (Di Minin et al., 2019), 
potentially driving reallocation of resources to improve protection of 
endangered species and their environments. 

A second group of biodiversity applications focus on mapping of 
species distributions. For instance, Jeawak et al., 2018 show how 
alternative data sources, such as observations from Flickr, can comple
ment traditional data sources used for species distribution mapping. 
Mapping of species distribution has also historically taken advantage of 
citizen science projects, with for example the Christmas Bird Count 
having a history dating back more than 100 years. Digitisation has eased 
access to data from such projects, and public concern and interest in 
cataloguing wildlife means that projects such as iNaturalist and eBird 
have been very successful. La Sorte et al., 2018 reviewed the potential of 
big data for ornithology, and underlined how new data sources could 
benefit species distribution modelling, for example by analysing tem
poral variations such as geographical range shifts or modified migration 
trajectories due to climate change. Moving beyond citizen science data 
created by experts, Leighton et al., 2016 investigated the spatial patterns 
in phenotype traits of the colour morphs of black bears, barn owls and 
black sparrowhawks as well as the distribution of the hooded and car
rion crows using Google Images, one of the largest collections of images 
found on the internet. As a cost-effective alternative to traditional 
methods like field surveys, Leighton et al., 2016 found good agreement, 
suggesting that UGC may be an effective source for environmental in
dicators. More recent work by Burke et al., 2022[p.1] takes this a step 
further, by aiming at “estimating the fraction of images within multiple 
unverified datasets that potentially depict a specified target fauna”. 
Their proposed workflow relies on general-purpose image classifiers, 
such as those made available by Google Cloud Vision or Microsoft Azure 
Computer Vision, to extract descriptive text-tags from an authoritative 
image dataset. The computed frequencies of the returned tags allow for 
‘fingerprinting’ of their species data which can be used to estimate the 
share of relevant data in other, unverified datasets. 

2.1. Research gap and research questions 

Despite a wide range of works discussing and demonstrating the 
potential of new data forms in the creation of indicators, we could not 
identify previous research which explicitly created a workflow designed 
to integrate data from different sources and of different modalities. 
Furthermore, although the properties of different forms of UGC are 
relatively well understood, they have not been effectively used to 
develop reproducible workflows. Finally, most studies evaluate the 

quality of extracted information in isolation through metrics such as 
precision and recall, but do not explore the added value of integrating 
data. These gaps lead to three research questions, which we address in 
what follows. The first two questions relate to the development of our 
workflow:  

1. How can a generic workflow be developed which leverages expert 
contributions from citizen science data to extract content from social 
media posts related to a given species, which can easily be used in 
practical applications?  

2. How can multiple modalities (e.g. text and images) be used to extract 
relevant information and does such a combination result in higher 
recall and/or precision? 

The third research question relates to the added value of our work
flow in integrating data from different sources. 

3. What added value with respect to coverage, type, overlap and vol
ume can we identify using a combination of citizen science and social 
media data? 

3. Methods 

3.1. Target species and study area 

We selected the medium-sized bird of prey red kite (Milvus milvus) as 
our exemplary target species. In the early nineteenth century, red kites 
were abundant throughout Europe, but they experienced a rapid decline 
in numbers at the end of the same century, mostly due to persecution 
(Davies and Davis, 1973; Evans and Pienkowski, 1991). As a conse
quence, policy regulations and protections were put in place in various 
countries. In Great Britain, extinction was averted by what is claimed to 
be the longest continuous conservation project in the world (RSPB, n.d.), 
and red kites were protected under Annex 1 of the EEC Bird Directive, 
Schedule 1 of the Wildlife and Countryside Act 1981, and the Conven
tion on the Conservation of Migratory Species of Wild Animals (CMS) 
(Evans and Pienkowski, 1991). Red kites are highly visible birds, and are 
an excellent example of a cultural ecosystem service in the form of 
visible wildlife enjoyed by locals and visitors alike. Importantly for our 
research, red kites have a number of distinguishing features, in partic
ular a forked tail, making them generally straightforward to identify in 
images (Fig. 1). Our choice of red kites was motivated by one other 
curiosity. Their English name is ambiguous, in that the two words ‘red’ 
and ‘kite’ may refer to either our species of interest, or a red-coloured 
toy flown in the wind by children. Such ambiguities are an important, 
though oft-ignored challenge in extracting information from UGC. 

To encourage population growth of red kites, reintroduction pro
grams have taken place at sites across Europe. We chose one of these 
sites, the Chilterns, a 1700 km2 Area of Outstanding National Beauty, as 
a study area for this project (Fig. 3). In the Chilterns, red kite viewing is 
actively advertised as a tourist attraction (Board, n.d.), and given the 
area’s proximity to London it is an important location for recreation and 
enjoyment of nature for a very large potential population. 

3.2. Workflow overview 

Since our workflow is designed to be generic, take advantage of the 
text and image data and combine records from citizen science reports 
with social media data, it uses a combination of a simple rule based- 
approach, existing pre-trained models and a model trained specifically 
for our target species (Fig. 2). Our approach is designed to take advan
tage of what we assume to be high quality data collected by citizen 
scientists with an interest in ornithology, use off-the-shelf models where 
possible, and reduce the initial number of social media posts in a given 
region to a manageable size for manual verification. Our workflow thus: 
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1. Identifies all geotagged social media records in our study area.  
2. Extracts all records with the Latin name of our target species Milvus 

milvus. We assume these users are experts, and that these records are 
thus assigned to our final set of relevant records.  

3. Uses an existing model to identify images containing birds. We retain 
only images which are classified here as birds (pB 50%) are worth 
further processing.  

4. Checks whether or not images classified as birds also have titles, 
descriptions and tags indicating that they are red kites in six Euro
pean languages (English: red kite, German: Rotmilan, Gabelweih, 
Königsweihe, French: milan royal, Italian: nibbio reale, Spanish: milano 
real and Dutch: rode wouw). We assume that such images are highly 
likely to be of our target species, and include these in our final set.  

5. For candidate images classified as birds, we run a second classifier 
trained on citizen science records, to identify those likely to be red 
kites (pRK 50%). These are also added to our final set of candidate 
images.  

6. Merges all candidate images identified in the social media data with 
those from our citizen science sources.  

7. Manually verifies the final candidate image output at step 6, to 
identify social media images containing red kites by hand. Our 
assumption here is that the workflow has greatly reduced the number 
of candidate images, and that a trained annotator can quickly iden
tify true positives returned by the workflow.  

8. Analyses the properties of red kite records from the three integrated 
datasets. We investigate four dimensions of the merged data: 

• Spatial: all images retrieved in the study area are mapped and pat
terns of contribution are qualitatively explored  

• Temporal: we explore how patterns of citizen science and social 
media contributions change over time (both in terms of absolute time 
and seasonal patterns of contribution) 

Fig. 1. Exemplary red kite Flickr post from the Chilterns including its meta
data. Credit to Steve Knight, (CC BY 2.0). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 2. Initial workflow to extract red kite relevant posts from Flickr to sub
sequently integrate them with observations in eBird and iNaturalist. TH1 and 
TH2 specify the bird model and red kite model threshold respectively (section 
3.2). However, for the final results presented in this paper, textual and visual 
data was parsed separately (final workflow), and their results were merged. 
(For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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• Users: we investigate how patterns of contribution vary within and 
between the three merged collections  

• Data quality: finally, we explore image data quality by manually 
labelling all images for (1) image quality, (2) number of red kites per 
image and (3) whether the red kites are sitting or flying 

In the following we describe the data used and image classification 
steps in more detail. 

3.3. Data 

Our workflow required three distinct datasets. These were:  

1. All Flickr posts (our social media data) in the bounding box of our 
study area.  

2. All citizen scientist records referring to red kites, irrespective of their 
locations.  

3. A set of citizen science data capturing other birds for use in model 
training. 

Flickr is a social media site, where individuals can upload photo
graphs and metadata including tags and locations in the form of co
ordinates. Flickr usage has declined in recent years, but it remains very 
popular in research, mostly because of its well documented and easy to 
use API, which allows querying using search terms and bounding boxes. 
Our citizen scientist data came from two platforms: iNaturalist and 
eBird. iNaturalist allows participants to upload images of organisms 
such as plants and insects to the platform and use its community to 
crowdsource the taxonomic identification. Currently according to their 
website (https://inaturalist.org), iNaturalist hosts nearly 100 Million 
observations of over 375,000 species and is therefore one of the largest 
and most successful citizen science projects to date (Unger et al., 2020). 
eBird has similar features to iNaturalist but as a platform is exclusively 
specialised in bird observations. Their website states (https://ebird.org) 
that “eBird is among the world’s largest biodiversity-related science 
projects, with more than 100 million bird sightings contributed annu
ally”. It predominantly hosts observation location data, but also corre
sponding bird images as well as bird sounds (Sullivan et al., 2009; Wood 
et al., 2011). 

We downloaded a total of 604,951 geotagged Flickr posts in the 
bounding box of the Chilterns as depicted in Fig. 3 by querying the Flickr 
API. Each Flickr post consists of a photograph and additional system- 
and user-generated information. In our case, this metadata (Fig. 1) in
cludes the physical location and time the image was taken, as well as 
textual information added by the author, such as a post title, description 
and tags. This rich textual information together with the images are used 
by our red kite detection workflow. 

To train our red kite classification model (step 5 in Fig. 2) we needed 
a reliable dataset containing images of birds composed of true positives 
(images of red kites) and true negatives (images of other bird species). 
Since we assume that citizen science data are reliable compared to 
captions from social media data, we created this dataset using eBird and 
iNaturalist records of red kites. Both eBird and iNaturalist moderate 
content, for example filtering and checking unusual sightings or volumes 
of contribution. 

To access data from eBird, we obtained the metadata for given search 
terms from the official website (eBird., 2021) and downloaded all 
associated “Specimen Page URLs”, which represent individual images. 
For iNaturalist we used a dedicated API,1 similar to the one provided by 
Flickr and a community-driven open source Python library called pyi
naturalist (Noé, 2022). 

Our true positive dataset thus consisted of citizen science records of 
red kites sourced from eBird and iNaturalist, manually filtered for poor 

examples (e.g. feathers or birds not visible to the human eye). True 
negatives were eBird records for 11 common European bird species, 
without any filtering for poor examples. The 11 species were: Black- 
headed Gull (Chroicocephalus ridibundus), Eurasian Blue Tit (Cyanistes 
caeruleus), Eurasian Magpie (Pica pica), Eurasian Jay (Garrulus glandar
ius), Eurasian Blackbird (Turdus merula), House Sparrow (Passer domes
ticus), Rock Pigeon (Columba livia), Mallard (Anas platyrhynchos), 
Eurasian Coot (Fulica atra), Barn Swallow (Hirundo rustica) and Mute 
Swan (Cygnus olor). A break-down of the data records by data source and 
type is visible in Table 1. 

Through this approach, we created a balanced dataset consisting of 
24,675 true positive red kite images, and 31,922 true negatives. These 
data were then randomly split into data for training, validation (used to 
select the most performant model variant discussed below) and testing 
(used to evaluate the performance of the final red kite classification 
model) as seen in Table 2. 

3.4. Image classification models 

In our workflow (Fig. 2) two convolutional neural networks (CNNs) 
were used. The first was the bird object detection model, more specif
ically a ResNet101 downloaded from the TensorFlow 2 Detection Model 
Zoo.2 We initialised our ResNet101 object detection model, which uses 
640 × 640 pixel input images, with pretrained COCO weights. This 
implies that the model was already able to detect 80 generic object 
classes such as ‘truck‘, ‘chair’, ‘apple’ and most importantly ‘bird’ with a 
mean average precision across all classes of 0.318 and an inference time 
of 55 ms (Martín Abadi et al., 2015). Being able to successfully detect the 
class ‘bird’ as a filtering step before running our red kite model was 
central to our procedure. 

The second CNN was our red kite image classification model. Red 
kites do not belong to the generic objects detectable by pretrained, off- 
the-shelve image classifiers. Thus, we needed to train an image classi
fication model capable of performing this task. For this we applied 
transfer-learning to a ResNet50 pretrained on ImageNet. We slightly 
adapted the original architecture using Keras (Chollet et al., 2015) as a 
high-level API build on top of TensorFlow. We replaced the final 1000- 
way classification layer of the model with two additional, fully con
nected layers with ReLu non-linearity activation followed by a 2-way 
logistic regression classifier, trained via standard cross-entropy loss. 
These layers add 1 million untrained parameters to the network which 
need to be tuned to detect red kites on 224 × 224 pixel input images. The 
pretrained network was frozen during the transfer-learning process, and 
only the newly added layers were trained. ResNet50s are commonly 
used in practice, especially for transfer-learning applications, since they 
offer a good trade-off between inference time and accuracy. Similarly, 
de Lutio et al., 2021; Miao et al., 2019; Nguyen et al., 2017 successfully 
applied ResNet50s to train a plant, and two wildlife detection models 
respectively. 

The two CNNs differ in size and complexity. The ResNet101 object 
detection model has double the amount of layers (101) but was used off 
the shelf, whereas the ResNet50 red kite model was trained using 
transfer-learning on the citizen science data described in Table 2. These 
differences are important when interpreting the performance of the in
dividual models within the workflow, since more layers are associated 
with higher precision at the cost of longer inference times and higher 
computational demand. 

The custom red kite model was trained using the Google Colab Pro 
infrastructure3 which allows Jupyter notebooks to be run in a GPU 
enabled runtime environment which is an affordable alternative to 
acquiring the hardware needed for model training. The model was 
trained with a NVIDIA TESLA T4® graphic card for 500 epochs (i.e. 500 

1 https://inaturalist.org/pages/apireference, accessed: 14.06.2021 

2 https://bit.ly/38cqlYX  
3 https://colab.research.google.com, accessed: 17.06.2021 

M.C. Hartmann et al.                                                                                                                                                                                                                          

https://inaturalist.org
https://ebird.org
https://inaturalist.org/pages/apireference
https://bit.ly/38cqlYX
https://colab.research.google.com


Ecological Informatics 71 (2022) 101782

6

passes over the entire training set) and a batch size of 64, with an ADAM 
optimiser and a learning rate of 10− 5. Image augmentation was applied 
in the form of horizontal flip, 0.2 degree counter clock wise shear and a 
random zoom between 0 and 0.2 - all leading to 224 × 244 pixel RGB 
input tensors. Data was normalised to ImageNet mean values, and the 
pixels values were rescaled in the range of [0,1]. Model training took 
roughly 4 days. The best model was selected based on minimal valida
tion loss that occurred at epoch 448. This model showed a training loss 
of 0.256, a training accuracy of 0.899, a validation loss of 0.298 and 
validation accuracy of 0.891. We evaluated the red kite model perfor
mance based on an independent test set of 2060 images (as described in 
3.3). 950 of these images were true positive red kites images and the 

remaining 1110 were true negative red kite images consisting of an even 
mix of the 11 common European bird species. Table 3 provides a com
plete overview of the final red kite model performance. We assessed 
model performance as good, with an F1-score of 0.839. 

4. Results and interpretation 

The aim of our workflow was to extract relevant images of red kites 
from Flickr data and to use these to complement citizen science records 
from eBird and iNaturalist. In the following, we therefore explore three 
aspects of the results we obtained: 

Fig. 3. Locations of extracted red kite observations from the three integrated UGC sources Flickr, eBird and iNaturalist within the Chilterns. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 1 
Break-down of the data records by their platform and type. NA indicates an unknown quantity of records at the time of acquisition. Red kite images from citizen science 
data were manually verified before use as training and validation data in the CNN part of the workflow (step 5 in Figure 2:).  

Data records Flickr eBird iNaturalist 

red kites (verified) NA 7790 16,885 
11 other European bird species (not verified) – 32,986 (3 k per species) 0 
total 604,951 40,776 16,885  

Table 2 
Datasets used to train, validate and test the red kite classifier.  

Class Training Validation Testing Total 

true positives (red kites) 19,929 (81%) 3796 (15%) 950 (4%) 24,675 
true negatives (11 other European bird species) 27,453 (83%) 4422 (13%) 1110 (4%) 32,986  

Table 3 
Confusion matrix of the red kite model with the resulting performance metrics based on the test set. 
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• How effective is our workflow at extracting relevant red kite images, 
and how much added value is obtained through the use of both text 
and image content (Research questions 1 & 2)  

• What are the properties of the extracted records within our study 
area, and do the social media data complement the citizen science 
platforms (Research question 3) 

4.1. Workflow performance 

The workflow (Fig. 2) returned 3065 candidate images, down
sampling the original dataset by 99.5%. These images were then indi
vidually inspected to identify true and false positives, and allow us to 
calculate precision. Images were marked as true positives if a red kite 
was clearly identifiable in an image. This meant that images had to be 
sufficiently clear, such that distinctive features of red kites (e.g. their 
forked tails or red-brown colouring) were visible. Images where a bird 
was visible, but not unambiguously identifiable, images showing 
feathers or pellets and images which were obviously irrelevant were all 
marked as false positives. A total of 2017 records were thus identified as 
true positives, with 1048 false positives, and a resulting precision for the 
complete workflow of 0.658. 

To understand the benefits of text and image analysis, we ran the 
components of the workflow individually, and annotated any additional 
images extracted (Table 4).  

1. In the textual workflow setting, records were returned if either the 
Latin name or a common name for red kite (in six language varia
tions) were detected. This approach identified 2215 posts of which 
1946 were true positives, and 269 false positives, resulting in a 
precision of 0.879. 

2. In the visual workflow setting, only visual information was consid
ered. A post was considered relevant and included if both the bird 
model and red kite model return a probability above 50% for the 
given image. This approach returned 2763 included posts of which 
1723 were true positives and 1040 were false positives, giving a 
precision of 0.624. 

Next, we analysed the added benefit that each of these data streams 
provide which requires knowledge about the overlap between them. We 
found 1419 Flickr posts that were included by both settings of which 
1407 were true positives. This means that by only retaining candidate 
records identified by both textual and image-based information we can 
achieve an almost perfect precision of 0.992. We then checked for re
cords that were exclusively identified by either text or image analysis. 
539 posts were only detected by the textual analysis (point 1 in list 
above) and 316 were only detected by the visual analysis (point 2 in list 
above). Combining these results leads to a total of 3559 records of which 
2262 are true positives and 1297 are false positives, and a precision of 
0.636. Looking back at the performance of our initial integrated work
flow (Table 4:), we note that 245 (12%) additional true positive red kite 
posts were extracted by merging the results of separately performed 
textual and visual analysis. This increase in recall is at the cost of a very 
slight reduction in precision of 0.02. Summarising these findings, 62% of 
true positives were found using either text or image analysis. 24% are 
only correctly classified by textual data and 14% are missed if no visual 
analysis is performed. 

4.2. Data integration 

Having identified relevant records from Flickr data, we then merged 
them with eBird and iNaturalist photographs labelled as red kites, found 
in our study area, to explore the benefits of integrating these three 
sources in terms of spatial and temporal coverage and user diversity. 

Our merged dataset consists of all geotagged photographs found in 
the Chilterns depicting identifiable red kites (for Flickr) and all geo
tagged records reported as being red kites in the Chilterns in eBird and 
iNaturalist. 

The spatial distribution of the three sources is shown in Fig. 3. We 
record a total of 2732 observations, including 2262 (83%) Flickr, 271 
(10%) eBird and 199 (7%) iNaturalist observations inside the query 
bounding box. Flickr therefore increases the total data volume by a 
factor ~10 compared to the citizen science datasets. Fig. 3 shows how 
the underlying three datasets overlap but also complement each other in 
their spatial coverage. Flickr data is more strongly clustered around 
urban settlements (e.g. Watlington or Princes Risborough) while eBird 
and iNaturalist show a more homogeneous spread over the region as a 
whole. Nevertheless, Flickr does not show a significant increase in data 
in the south-east around the London suburb Slough, suggesting that red 
kite data is indeed specifically centred on the Chilterns. We also see that 
Flickr adds asymmetrically more data in the south-east compared to the 
north-west, directly affecting the spatial coverage in these areas. Over
all, combining the three datasets significantly boosts spatial coverage 
and data volume. 

We then explored the temporal distribution of observations. In a first 
step, we summarise observations in yearly bins for all three datasets 
(Fig. 4 a). We observe that Flickr has the highest and most consistent 
coverage, ranging from the year 2005 (only one observation) to 2021. 
There is a peak at around 2011 with declining values on both sides. The 
eBird data ranges from 2004 to 2021, with four gaps, namely 2005, 
2007–8 and 2010. A similar pattern is observed for iNaturalist but with a 
later first recorded observation in 2013. Flickr observations on the other 
hand have declined considerable since 2011. Between 2007 and 2016, 
Flickr provided nearly all the available red kite data (with images) for 
the Chilterns from all datasets combined. The year 2020 marks the only 
year where another data source besides Flickr provided more contri
butions - namely iNaturalist. At the end of our time frame in the year 
2021 Flickr again provides the majority of data but its share has shrunk 
to 44% (101) while the share of eBird and iNaturalist rose to 31% (71) 
and 25% (57) respectively. 

In a second temporal analysis we aggregated observations by months 
to identify seasonal trends of red kite observations in the Chilterns 
(Fig. 4 b). Flickr shows a clear bias towards spring and summer months 
with a decline in observations during autumn and winter. iNaturalist 
shows a similar seasonal trend but the signal for eBird is less distinct. 

Using multiple datasets can improve coverage in additional ways, 
beyond spatial and temporal coverage. The representativeness of user- 
generated content is strongly dependent on the number of users 
contributing to the data and what share of the population they represent. 
Fig. 5 shows the number of unique users per platform with their 
respective share of observations. We found that in the case of eBird, 
there are a total of 71 observers (unique users) of whom five contribute 
100 out of all 271 eBird observations, with the top contributor adding 30 
observations alone. Flickr contributions are more evenly distributed, 
with 2262 records contributed by 487 unique users. The top contributor 
shared 88 observations, while 231 contributors each added a single 
observation. iNaturalist also contains a relatively diverse set of 135 
unique users, with the top contributor having added 11 observations. At 
least in the given region, iNaturalist seems to be able to attract a diverse 
pool of users, possibly due to a strategy more focused on the platform’s 
approachability via its own mobile app that incorporates gamification 
elements (Unger et al., 2020). 

Table 4 
Precision using different combinations of the components in the workflow.  

Approach Included posts True positives Precision 

Only text data 2215 1946 0.878 
Only visual data 2763 1723 0.624 
Initial workflow (Fig. 2) 3065 2017 0.658 
text + visual data (final workflow) 3559 2262 0.636  

M.C. Hartmann et al.                                                                                                                                                                                                                          



Ecological Informatics 71 (2022) 101782

8

4.3. Data quality 

As a final part of the data integration analysis we investigated dif
ferences in the image properties of the associated three platforms 
(Fig. 6). We manually labelled all images based on:  

1. Image quality quantified by image resolution and how visible red 
kites were. Flickr images have an average of 0.75 M pixels (MP) and 
are therefore of significantly higher resolution than images from 
eBird and iNaturalist with 0.29 MP and 0.19 MP. We considered 
blurry images or images of red kites in the far distance as low quality. 
According to our analysis, eBird offers the least low quality images 
with 16%, followed by 24% for Flickr and 38% for iNaturalist.  

2. The number of red kites per image (together with the amount of 
photo sessions per platform) is an important attribute for inferring 
population sizes, since normally one bird per image is assumed. We 

found that 19% of eBird, 17% of Flickr and 10% of iNaturalist images 
contained multiple red kites.  

3. If a red kite is depicted as sitting or flying can be important for 
multiple reasons, such as for interpreting the generalisation capa
bilities of the CNN models, since the shape of the bird differs dras
tically between modes. Additionally, sitting birds are often harder to 
spot and unambiguously identify than flying individuals. We 
hypothesise that more sitting bird images hint at a user base better 
trained at detecting these birds and who are actively looking for 
these individuals. We recorded by far the most sitting birds in eBird 
with 46%, followed by Flickr with 18% and iNaturalist with 11%. 

During the annotation process we suspected that multiple images 
contained the same red kite. We therefore decided to investigate how 
many images per user and location (within a 500 m radius) we could 
find - we defined such clusters as photo sessions, as an approximation for 
unique observations. 74% of Flickr, 73% of eBird and 0% of iNaturalist 

Fig. 4. The figures show the yearly (a) and monthly (b) temporal distribution of red kite observations in the Chilterns. Flickr adds distinctively to the temporal 
coverage in the years 2007 to 2016 after which eBird and iNaturalist gain in popularity. Strong seasonal patterns can be observed that are skewed towards the spring 
and summer months. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. The histograms visualise the contributions per unique user among the three UGC sources. eBird data is characterised by the largest influence of users with 
high individual contributions while also having the smallest number of unique users. 
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images were part of a photo session with two or more images. On 
average the photo sessions contained 2.29, 2 and 1 image(s) for Flickr, 
eBird and iNaturalist respectively. This difference is important, since it 
suggests that in iNaturalist, citizen scientists behave differently, 
recording only single observations, while in Flickr and eBird multiple 
images of the same birds are more likely (and thus potentially more 
contextual information can be explored). Using eBird and Flickr records 
without filtering for photo sessions would likely result in higher counts 
than iNaturalist records. 

5. Discussion 

In this study we developed a workflow which leveraged citizen sci
ence data to extract further relevant records from social media posts in 
the same region. The workflow functions as a data filter enabling 
downsampling of an initially very large dataset into a human analysable 
subset - in our case containing 0.5% of the original posts. By massively 
reducing data volumes, it becomes realistic to analyse the remaining 
data by hand to select true positives, with around one hour required for 
the 4000 or so candidate posts we identified. Our workflow thus ad
dresses the research gap identified by Burke et al., 2022, using gen
eralisable methods to extract target data from various, unverified 
sources to enrich data. 

Our initial data extraction workflow (Fig. 2) assumed that word 
ambiguity would play a dominant role in identifying relevant posts in 
the Flickr corpus. We explored the influence of text and image analysis 
by analysing each component individually. Here, three points are 
important. Firstly, simple keyword matching delivered high precision 
with little evidence of ambiguity with respect to the use of red kite in our 
study area. Image analysis, performed using an off-the-shelf model to 
identify birds, followed by a red kite model leveraging citizen science 
data for training, returned more potential candidates than textual 
analysis, but with lower precision. Secondly, by only retaining posts 

identified by both textual and visual analysis, we could achieve almost 
perfect precision (0.992), at the cost of lower recall. Thirdly, by 
combining the two approaches, we increased the extracted data volume 
by almost 14%, while still downsamping the original dataset by around 
99.5% and with a precision 0.636. Recall for the workflow overall is not 
known, since this would require manual analysis of over 600,000 posts. 
Our results thus go further than previous work by demonstrating how 
images retrieved using text and image metadata can be combined to 
achieve very high precision, or merged to increase recall while still 
filtering initial datasets very effectively. To better understand our results 
and their transferability to other species, we looked more closely at data 
quality. Flickr users often used relevant textual descriptions to label 
their red kite sightings with their captured images. This high textual 
quality together with the small impact of word ambiguity explains the 
equally high textual precision. Detecting red kites in images is not as 
straightforward as looking for specific keywords. Even for experts it can 
be hard to differentiate between similar raptors e.g. red kites and buz
zards. An expert or in our case two sequential CNNs must make a pre
diction based on a single image whereas the textual description was 
formulated by the author as a result of the entire red kite observation, 
potentially hearing and seeing the bird from multiple angles and 
distances. 

Our approach was similar to that taken by a naive human - first we 
classified images as birds, and only then did we consider whether or not 
these birds might be red kites. The bird detector was a pretrained, off- 
the-shelf classifier with well tested performance, and this approach 
appeared to work well. However, we did not use object classification in 
our red kite detector, but rather an image classifier, which could only 
classify entire images and not detect isolated objects. Although object 
detection models are more performant, they need greater volumes of 
manually annotated training data. We opted for a faster model creation 
process, based on categorised photographs from trusted sources (eBird 
and iNaturalist) to train layers in an image classification model without 

Fig. 6. Analysis of image properties for the three UGC platforms Flickr, eBird and iNaturalist.  

M.C. Hartmann et al.                                                                                                                                                                                                                          



Ecological Informatics 71 (2022) 101782

10

further manual annotation, allowing our study to be more transferable 
to other targets. Since in practice the image properties of these photo
graphs varied (Fig. 6) with eBird having much higher quality images 
than iNaturalist, future work could benefit from selecting only high 
quality images for training purposes. Improving the image detection 
models, e.g. by choosing more performant off-the-shelf architectures as 
these emerge, or collecting more training data (e.g. including explicitly 
sitting and flying birds) would be a straightforward way to increase the 
overall workflow performance. 

It is important to highlight a constraint that we laid upon the data. 
Firstly, we considered only observations with images. Flickr posts, by 
their nature, almost always include images. eBird and iNaturalist how
ever, are dominated by observations without images – eBird for instance 
hosts 204,151 world-wide red kite observations of which only 6109 
(3%) have images. This restriction was made to ensure consistency of the 
extracted data across all platforms and to amass a geotagged image 
corpus. Validating observations based on images was crucial to our 
analysis. 

The visual distribution of points on the map in Fig. 3 shows how the 
different sources complement one another. The locations of Flickr posts 
resemble patterns familiar from social media analysis, clustering around 
urban areas and points of interest along the existing road network, 
correlating with accessibility (Hausmann et al., 2019). This suggests that 
the Flickr observations are often taken opportunistically e.g. during a 
walk without an initial intent to seek out and photograph red kites. eBird 
and iNaturalist on the other hand show a different pattern. The obser
vations are more heterogeneously allocated and show less obvious re
lationships to known spatial features. This suggests that birdwatchers go 
out with a clear intention to observe birds and seek a variety of locations 
for that purpose. 

We analysed the temporal coverage of red kite observations in the 
Chilterns on a yearly and monthly scale. Aggregating data over years 
revealed that the pattern shown by Flickr clearly sets itself apart from 
the one’s of eBird and iNaturalist. Year on year changes appear to be 
more driven by underlying platform dynamics such as user-base and 
popularity changes (Wu et al., 2016). We suspect that the rapid drop of 
Flickr observations from 2012 onward represents a decrease in Flickr 
popularity (Stuart, 2019) rather than a decline in red kites in the Chil
terns. On the other hand, we observe a strong increase for eBird and 
iNaturalist from the year 2016 onward. This could be the result of 
increased popularity, increased interest in red kites, or increased visits to 
the study region. Looking at monthly temporal scales shows a trend 
towards the warmer spring and summer months between March and 
June. These results may suggest higher visitation rates to the Chilterns in 
warmer periods but could also be influenced by specific red kite 
behavioural patterns. 

Investigating the number of unique users per data source revealed 
that representativeness varies between platforms. eBird data was 
contributed by the fewest individuals whereas Flickr and iNaturalist 
offered a more diverse user base. This observation could be attributed to 
higher platform popularity and overall larger user bases of the latter 
two. Having knowledge of the share of the population represented by an 
UGC based analysis is crucial for policy makers to make adequate de
cisions that reflect the people’s opinion (Wang et al., 2019). 

As a final dimension of our data integration we explored platform 
specific image properties. Photo sessions may be useful as a proxy for 
observed individuals, since they suggest multiple images of the same 
individual and can be considered similar to the very popular notion of 
photo user days (Keeler et al., 2015). The lack of photo sessions found in 
iNaturalist may be a result of the generally small corpus or specific 
behaviour of participants. These observations point to the importance of 
understanding platform dynamics and focussing on the use of such data 
as either relative proxies, or additional evidence of presence, for use in 
species distribution mapping (ElQadi et al., 2017). 

The image quality analysis revealed clear differences between social 
media data in Flickr and citizen science data in eBird and iNaturalist. For 

Flickr we observed significantly higher image resolution and quality. We 
hypothesise that Flickr users are primarily interested in capturing scenic 
and visually pleasing images whereas eBird and iNaturalist users are 
more concerned about capturing the target species itself as a proof of 
observation and less about the image quality. This discovery may point 
to the potential usefulness of social media data for identification and 
tracking of individuals (Pace et al., 2019). Visual quality of images in 
terms of blurriness and visibility of the red kites correlates strongly with 
whether birds were sitting or flying. iNaturalist which had the largest 
share of flying red kites also has the most images of low quality. We 
conclude that the high image resolution and image quality for Flickr 
indicates that it is a valuable data source not only in terms of quantity 
(volume) but also in terms of quality. 

It is not unexpected that by combining datasets we produce a larger 
volume of data - but having more data does not always mean there is 
more information. It may simply be more noise. Or as Boyd and Craw
ford, 2012 [p.668] put it “increasing the size of the haystack does not 
make the needle easier to find”. It is therefore important to analyse 
different dimensions - besides volume - that characterise added value 
and quantify them. Our findings suggest that the datasets complement 
one another in terms of spatial and temporal coverage - filling data gaps 
existing in the individual datasets. The increase in the number of unique 
users suggests that not only the data is complementary, but also that 
representativeness, in terms of observers, has improved. 

6. Conclusion 

Our aim in this paper was to develop a generic workflow, leveraging 
citizen science records to identify complementary data in social media. 
Our approach can be easily transferred to visible species which are likely 
to be photographed by citizen scientists and nature and landscape 
photographers - in other words it can be used as a potential indicator of a 
cultural ecosystem service in the form of nature appreciation. 

We illustrated the use of our workflow in an area known for red kites; 
a classic indicator species appreciated in many European countries. Our 
results demonstrate that leveraging citizen science data is an effective 
approach to increasing data volume and representativeness, potentially 
filling demographic, spatial and temporal data gaps. We also analysed 
how well textual and visual data components such as descriptions and 
images could be used to improve the data integration, extending pre
vious work that used only one of these components (Jeawak et al., 2018; 
Lopez et al., 2020). The high quality of user provided text from Flickr 
yielded a higher precision than the visual analysis of images. Nonethe
less, analysis of images allowed us to extract 14% more red kite obser
vations from Flickr using a custom red kite image classifier trained on 
eBird and iNaturalist data that was able to generalise to unseen Flickr 
images. We found that if we included only Flickr posts identified by 
textual and image-based information, that with the retained candidate 
records we can achieve an almost perfect precision of 0.992. 

Our workflow does not make manual verification of extracted data 
obsolete, but rather allows the down-scaling of large initial data volumes 
to manageable subsets. Ultimately, our work highlights the importance 
of using multiple data sources to obtain more complete and less biased 
datasets. 
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